| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dih1cnv.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dih1cnv.m |
|- .1. = ( 1. ` K ) |
| 3 |
|
dih1cnv.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 4 |
|
dih1cnv.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 5 |
|
dih1cnv.v |
|- V = ( Base ` U ) |
| 6 |
2 1 3 4 5
|
dih1 |
|- ( ( K e. HL /\ W e. H ) -> ( I ` .1. ) = V ) |
| 7 |
6
|
fveq2d |
|- ( ( K e. HL /\ W e. H ) -> ( `' I ` ( I ` .1. ) ) = ( `' I ` V ) ) |
| 8 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 9 |
8
|
adantr |
|- ( ( K e. HL /\ W e. H ) -> K e. OP ) |
| 10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 11 |
10 2
|
op1cl |
|- ( K e. OP -> .1. e. ( Base ` K ) ) |
| 12 |
9 11
|
syl |
|- ( ( K e. HL /\ W e. H ) -> .1. e. ( Base ` K ) ) |
| 13 |
10 1 3
|
dihcnvid1 |
|- ( ( ( K e. HL /\ W e. H ) /\ .1. e. ( Base ` K ) ) -> ( `' I ` ( I ` .1. ) ) = .1. ) |
| 14 |
12 13
|
mpdan |
|- ( ( K e. HL /\ W e. H ) -> ( `' I ` ( I ` .1. ) ) = .1. ) |
| 15 |
7 14
|
eqtr3d |
|- ( ( K e. HL /\ W e. H ) -> ( `' I ` V ) = .1. ) |