| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihw.b |
|- B = ( Base ` K ) |
| 2 |
|
dihw.h |
|- H = ( LHyp ` K ) |
| 3 |
|
dihw.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 4 |
|
dihw.o |
|- .0. = ( f e. T |-> ( _I |` B ) ) |
| 5 |
|
dihw.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 6 |
|
dihw.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 7 |
6
|
simprd |
|- ( ph -> W e. H ) |
| 8 |
1 2
|
lhpbase |
|- ( W e. H -> W e. B ) |
| 9 |
7 8
|
syl |
|- ( ph -> W e. B ) |
| 10 |
6
|
simpld |
|- ( ph -> K e. HL ) |
| 11 |
10
|
hllatd |
|- ( ph -> K e. Lat ) |
| 12 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 13 |
1 12
|
latref |
|- ( ( K e. Lat /\ W e. B ) -> W ( le ` K ) W ) |
| 14 |
11 9 13
|
syl2anc |
|- ( ph -> W ( le ` K ) W ) |
| 15 |
9 14
|
jca |
|- ( ph -> ( W e. B /\ W ( le ` K ) W ) ) |
| 16 |
|
eqid |
|- ( ( DIsoB ` K ) ` W ) = ( ( DIsoB ` K ) ` W ) |
| 17 |
1 12 2 5 16
|
dihvalb |
|- ( ( ( K e. HL /\ W e. H ) /\ ( W e. B /\ W ( le ` K ) W ) ) -> ( I ` W ) = ( ( ( DIsoB ` K ) ` W ) ` W ) ) |
| 18 |
6 15 17
|
syl2anc |
|- ( ph -> ( I ` W ) = ( ( ( DIsoB ` K ) ` W ) ` W ) ) |
| 19 |
|
eqid |
|- ( ( DIsoA ` K ) ` W ) = ( ( DIsoA ` K ) ` W ) |
| 20 |
1 12 2 3 4 19 16
|
dibval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( W e. B /\ W ( le ` K ) W ) ) -> ( ( ( DIsoB ` K ) ` W ) ` W ) = ( ( ( ( DIsoA ` K ) ` W ) ` W ) X. { .0. } ) ) |
| 21 |
6 15 20
|
syl2anc |
|- ( ph -> ( ( ( DIsoB ` K ) ` W ) ` W ) = ( ( ( ( DIsoA ` K ) ` W ) ` W ) X. { .0. } ) ) |
| 22 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
| 23 |
1 12 2 3 22 19
|
diaval |
|- ( ( ( K e. HL /\ W e. H ) /\ ( W e. B /\ W ( le ` K ) W ) ) -> ( ( ( DIsoA ` K ) ` W ) ` W ) = { g e. T | ( ( ( trL ` K ) ` W ) ` g ) ( le ` K ) W } ) |
| 24 |
6 15 23
|
syl2anc |
|- ( ph -> ( ( ( DIsoA ` K ) ` W ) ` W ) = { g e. T | ( ( ( trL ` K ) ` W ) ` g ) ( le ` K ) W } ) |
| 25 |
12 2 3 22
|
trlle |
|- ( ( ( K e. HL /\ W e. H ) /\ g e. T ) -> ( ( ( trL ` K ) ` W ) ` g ) ( le ` K ) W ) |
| 26 |
6 25
|
sylan |
|- ( ( ph /\ g e. T ) -> ( ( ( trL ` K ) ` W ) ` g ) ( le ` K ) W ) |
| 27 |
26
|
ralrimiva |
|- ( ph -> A. g e. T ( ( ( trL ` K ) ` W ) ` g ) ( le ` K ) W ) |
| 28 |
|
rabid2 |
|- ( T = { g e. T | ( ( ( trL ` K ) ` W ) ` g ) ( le ` K ) W } <-> A. g e. T ( ( ( trL ` K ) ` W ) ` g ) ( le ` K ) W ) |
| 29 |
27 28
|
sylibr |
|- ( ph -> T = { g e. T | ( ( ( trL ` K ) ` W ) ` g ) ( le ` K ) W } ) |
| 30 |
24 29
|
eqtr4d |
|- ( ph -> ( ( ( DIsoA ` K ) ` W ) ` W ) = T ) |
| 31 |
30
|
xpeq1d |
|- ( ph -> ( ( ( ( DIsoA ` K ) ` W ) ` W ) X. { .0. } ) = ( T X. { .0. } ) ) |
| 32 |
18 21 31
|
3eqtrd |
|- ( ph -> ( I ` W ) = ( T X. { .0. } ) ) |