Metamath Proof Explorer


Theorem dihwN

Description: Value of isomorphism H at the fiducial hyperplane W . (Contributed by NM, 25-Aug-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihw.b 𝐵 = ( Base ‘ 𝐾 )
dihw.h 𝐻 = ( LHyp ‘ 𝐾 )
dihw.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dihw.o 0 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
dihw.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihw.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion dihwN ( 𝜑 → ( 𝐼𝑊 ) = ( 𝑇 × { 0 } ) )

Proof

Step Hyp Ref Expression
1 dihw.b 𝐵 = ( Base ‘ 𝐾 )
2 dihw.h 𝐻 = ( LHyp ‘ 𝐾 )
3 dihw.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 dihw.o 0 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
5 dihw.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
6 dihw.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 6 simprd ( 𝜑𝑊𝐻 )
8 1 2 lhpbase ( 𝑊𝐻𝑊𝐵 )
9 7 8 syl ( 𝜑𝑊𝐵 )
10 6 simpld ( 𝜑𝐾 ∈ HL )
11 10 hllatd ( 𝜑𝐾 ∈ Lat )
12 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
13 1 12 latref ( ( 𝐾 ∈ Lat ∧ 𝑊𝐵 ) → 𝑊 ( le ‘ 𝐾 ) 𝑊 )
14 11 9 13 syl2anc ( 𝜑𝑊 ( le ‘ 𝐾 ) 𝑊 )
15 9 14 jca ( 𝜑 → ( 𝑊𝐵𝑊 ( le ‘ 𝐾 ) 𝑊 ) )
16 eqid ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
17 1 12 2 5 16 dihvalb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑊𝐵𝑊 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼𝑊 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑊 ) )
18 6 15 17 syl2anc ( 𝜑 → ( 𝐼𝑊 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑊 ) )
19 eqid ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
20 1 12 2 3 4 19 16 dibval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑊𝐵𝑊 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑊 ) = ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑊 ) × { 0 } ) )
21 6 15 20 syl2anc ( 𝜑 → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑊 ) = ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑊 ) × { 0 } ) )
22 eqid ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
23 1 12 2 3 22 19 diaval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑊𝐵𝑊 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑊 ) = { 𝑔𝑇 ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ( le ‘ 𝐾 ) 𝑊 } )
24 6 15 23 syl2anc ( 𝜑 → ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑊 ) = { 𝑔𝑇 ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ( le ‘ 𝐾 ) 𝑊 } )
25 12 2 3 22 trlle ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑔𝑇 ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ( le ‘ 𝐾 ) 𝑊 )
26 6 25 sylan ( ( 𝜑𝑔𝑇 ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ( le ‘ 𝐾 ) 𝑊 )
27 26 ralrimiva ( 𝜑 → ∀ 𝑔𝑇 ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ( le ‘ 𝐾 ) 𝑊 )
28 rabid2 ( 𝑇 = { 𝑔𝑇 ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ( le ‘ 𝐾 ) 𝑊 } ↔ ∀ 𝑔𝑇 ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ( le ‘ 𝐾 ) 𝑊 )
29 27 28 sylibr ( 𝜑𝑇 = { 𝑔𝑇 ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ( le ‘ 𝐾 ) 𝑊 } )
30 24 29 eqtr4d ( 𝜑 → ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑊 ) = 𝑇 )
31 30 xpeq1d ( 𝜑 → ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑊 ) × { 0 } ) = ( 𝑇 × { 0 } ) )
32 18 21 31 3eqtrd ( 𝜑 → ( 𝐼𝑊 ) = ( 𝑇 × { 0 } ) )