Step |
Hyp |
Ref |
Expression |
1 |
|
dihw.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihw.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dihw.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dihw.o |
⊢ 0 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
5 |
|
dihw.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
dihw.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
6
|
simprd |
⊢ ( 𝜑 → 𝑊 ∈ 𝐻 ) |
8 |
1 2
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) |
10 |
6
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
11 |
10
|
hllatd |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
12 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
13 |
1 12
|
latref |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐵 ) → 𝑊 ( le ‘ 𝐾 ) 𝑊 ) |
14 |
11 9 13
|
syl2anc |
⊢ ( 𝜑 → 𝑊 ( le ‘ 𝐾 ) 𝑊 ) |
15 |
9 14
|
jca |
⊢ ( 𝜑 → ( 𝑊 ∈ 𝐵 ∧ 𝑊 ( le ‘ 𝐾 ) 𝑊 ) ) |
16 |
|
eqid |
⊢ ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
17 |
1 12 2 5 16
|
dihvalb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑊 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼 ‘ 𝑊 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑊 ) ) |
18 |
6 15 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑊 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑊 ) ) |
19 |
|
eqid |
⊢ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
20 |
1 12 2 3 4 19 16
|
dibval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑊 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑊 ) = ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑊 ) × { 0 } ) ) |
21 |
6 15 20
|
syl2anc |
⊢ ( 𝜑 → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑊 ) = ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑊 ) × { 0 } ) ) |
22 |
|
eqid |
⊢ ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
23 |
1 12 2 3 22 19
|
diaval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑊 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑊 ) = { 𝑔 ∈ 𝑇 ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ( le ‘ 𝐾 ) 𝑊 } ) |
24 |
6 15 23
|
syl2anc |
⊢ ( 𝜑 → ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑊 ) = { 𝑔 ∈ 𝑇 ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ( le ‘ 𝐾 ) 𝑊 } ) |
25 |
12 2 3 22
|
trlle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝑇 ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ( le ‘ 𝐾 ) 𝑊 ) |
26 |
6 25
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝑇 ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ( le ‘ 𝐾 ) 𝑊 ) |
27 |
26
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑔 ∈ 𝑇 ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ( le ‘ 𝐾 ) 𝑊 ) |
28 |
|
rabid2 |
⊢ ( 𝑇 = { 𝑔 ∈ 𝑇 ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ( le ‘ 𝐾 ) 𝑊 } ↔ ∀ 𝑔 ∈ 𝑇 ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ( le ‘ 𝐾 ) 𝑊 ) |
29 |
27 28
|
sylibr |
⊢ ( 𝜑 → 𝑇 = { 𝑔 ∈ 𝑇 ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ( le ‘ 𝐾 ) 𝑊 } ) |
30 |
24 29
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑊 ) = 𝑇 ) |
31 |
30
|
xpeq1d |
⊢ ( 𝜑 → ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑊 ) × { 0 } ) = ( 𝑇 × { 0 } ) ) |
32 |
18 21 31
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑊 ) = ( 𝑇 × { 0 } ) ) |