Step |
Hyp |
Ref |
Expression |
1 |
|
dihglblem5a.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihglblem5a.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
3 |
|
dihglblem5a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dihglblem5a.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dihglblem5a.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
6 |
|
dihglblem5a.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
7 |
|
dihglblem5a.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
8 |
|
dihglblem5a.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
dihglblem5a.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
dihglblem5a.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
dihglblem5a.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
|
dihglblem5a.g |
⊢ 𝐺 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑞 ) |
13 |
|
dihglblem5a.o |
⊢ 0 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
14 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
15 |
14
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
16 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑋 ∈ 𝐵 ) |
17 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑌 ∈ 𝐵 ) |
18 |
1 5 2
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ) |
19 |
15 16 17 18
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ) |
20 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
21 |
1 2
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
22 |
15 16 17 21
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
23 |
1 5 3 4
|
dihord |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊆ ( 𝐼 ‘ 𝑋 ) ↔ ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ) ) |
24 |
20 22 16 23
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊆ ( 𝐼 ‘ 𝑋 ) ↔ ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ) ) |
25 |
19 24
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊆ ( 𝐼 ‘ 𝑋 ) ) |
26 |
1 5 2
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) |
27 |
15 16 17 26
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) |
28 |
1 5 3 4
|
dihord |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊆ ( 𝐼 ‘ 𝑌 ) ↔ ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) ) |
29 |
20 22 17 28
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊆ ( 𝐼 ‘ 𝑌 ) ↔ ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) ) |
30 |
27 29
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊆ ( 𝐼 ‘ 𝑌 ) ) |
31 |
25 30
|
ssind |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊆ ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |
32 |
3 4
|
dihvalrel |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → Rel ( 𝐼 ‘ 𝑋 ) ) |
33 |
|
relin1 |
⊢ ( Rel ( 𝐼 ‘ 𝑋 ) → Rel ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |
34 |
32 33
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → Rel ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |
35 |
34
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → Rel ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |
36 |
|
elin |
⊢ ( 〈 𝑓 , 𝑠 〉 ∈ ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ↔ ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑌 ) ) ) |
37 |
1 5 6 2 7 3
|
lhpmcvr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
38 |
37
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
39 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
40 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) |
41 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → 𝑞 ∈ 𝐴 ) |
42 |
|
simprrl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ¬ 𝑞 ≤ 𝑊 ) |
43 |
41 42
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) |
44 |
|
simprrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) |
45 |
|
vex |
⊢ 𝑓 ∈ V |
46 |
|
vex |
⊢ 𝑠 ∈ V |
47 |
1 5 6 2 7 3 8 9 10 11 4 12 45 46
|
dihopelvalc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑋 ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ) ) |
48 |
39 40 43 44 47
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑋 ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ) ) |
49 |
|
simpr |
⊢ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) → ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) |
50 |
48 49
|
syl6bi |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑋 ) → ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ) |
51 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) |
52 |
1 5 3 9 10 13 4
|
dihopelvalbN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑌 ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) |
53 |
39 51 52
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑌 ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) |
54 |
53
|
biimpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑌 ) → ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) |
55 |
|
simprll |
⊢ ( ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) → 𝑓 ∈ 𝑇 ) |
56 |
55
|
3ad2ant3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝑓 ∈ 𝑇 ) |
57 |
|
simp3rr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝑠 = 0 ) |
58 |
57
|
fveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑠 ‘ 𝐺 ) = ( 0 ‘ 𝐺 ) ) |
59 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
60 |
5 7 3 8
|
lhpocnel2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
61 |
59 60
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
62 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝑞 ∈ 𝐴 ) |
63 |
|
simp2rl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ¬ 𝑞 ≤ 𝑊 ) |
64 |
5 7 3 9 12
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) → 𝐺 ∈ 𝑇 ) |
65 |
59 61 62 63 64
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝐺 ∈ 𝑇 ) |
66 |
13 1
|
tendo02 |
⊢ ( 𝐺 ∈ 𝑇 → ( 0 ‘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
67 |
65 66
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 0 ‘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
68 |
58 67
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑠 ‘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
69 |
68
|
cnveqd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ◡ ( 𝑠 ‘ 𝐺 ) = ◡ ( I ↾ 𝐵 ) ) |
70 |
|
cnvresid |
⊢ ◡ ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) |
71 |
69 70
|
eqtrdi |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ◡ ( 𝑠 ‘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
72 |
71
|
coeq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) = ( 𝑓 ∘ ( I ↾ 𝐵 ) ) ) |
73 |
1 3 9
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → 𝑓 : 𝐵 –1-1-onto→ 𝐵 ) |
74 |
59 56 73
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝑓 : 𝐵 –1-1-onto→ 𝐵 ) |
75 |
|
f1of |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐵 → 𝑓 : 𝐵 ⟶ 𝐵 ) |
76 |
|
fcoi1 |
⊢ ( 𝑓 : 𝐵 ⟶ 𝐵 → ( 𝑓 ∘ ( I ↾ 𝐵 ) ) = 𝑓 ) |
77 |
74 75 76
|
3syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑓 ∘ ( I ↾ 𝐵 ) ) = 𝑓 ) |
78 |
72 77
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) = 𝑓 ) |
79 |
78
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) = ( 𝑅 ‘ 𝑓 ) ) |
80 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) |
81 |
79 80
|
eqbrtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ) |
82 |
|
simprlr |
⊢ ( ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) → ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) |
83 |
82
|
3ad2ant3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) |
84 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝐾 ∈ HL ) |
85 |
84
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝐾 ∈ Lat ) |
86 |
1 3 9 10
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝑅 ‘ 𝑓 ) ∈ 𝐵 ) |
87 |
59 56 86
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅 ‘ 𝑓 ) ∈ 𝐵 ) |
88 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝑋 ∈ 𝐵 ) |
89 |
|
simp13l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝑌 ∈ 𝐵 ) |
90 |
1 5 2
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑅 ‘ 𝑓 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ↔ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑌 ) ) ) |
91 |
85 87 88 89 90
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( ( ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ↔ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑌 ) ) ) |
92 |
81 83 91
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑌 ) ) |
93 |
56 92
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑌 ) ) ) |
94 |
85 88 89 21
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
95 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝑊 ∈ 𝐻 ) |
96 |
1 3
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
97 |
95 96
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝑊 ∈ 𝐵 ) |
98 |
85 88 89 26
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) |
99 |
|
simp13r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝑌 ≤ 𝑊 ) |
100 |
1 5 85 94 89 97 98 99
|
lattrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) |
101 |
1 5 3 9 10 13 4
|
dihopelvalbN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑌 ) ) ∧ 𝑠 = 0 ) ) ) |
102 |
59 94 100 101
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑌 ) ) ∧ 𝑠 = 0 ) ) ) |
103 |
93 57 102
|
mpbir2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) |
104 |
103
|
3expia |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( ( ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑌 ) ∧ 𝑠 = 0 ) ) → 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
105 |
50 54 104
|
syl2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑌 ) ) → 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
106 |
38 105
|
rexlimddv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑌 ) ) → 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
107 |
36 106
|
syl5bi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) → 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
108 |
35 107
|
relssdv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ⊆ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) |
109 |
31 108
|
eqssd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |