Metamath Proof Explorer


Theorem dihmeetlem1N

Description: Isomorphism H of a conjunction. (Contributed by NM, 21-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihglblem5a.b 𝐵 = ( Base ‘ 𝐾 )
dihglblem5a.m = ( meet ‘ 𝐾 )
dihglblem5a.h 𝐻 = ( LHyp ‘ 𝐾 )
dihglblem5a.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihglblem5a.l = ( le ‘ 𝐾 )
dihglblem5a.j = ( join ‘ 𝐾 )
dihglblem5a.a 𝐴 = ( Atoms ‘ 𝐾 )
dihglblem5a.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
dihglblem5a.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dihglblem5a.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
dihglblem5a.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dihglblem5a.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑞 )
dihglblem5a.o 0 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
Assertion dihmeetlem1N ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 𝑌 ) ) = ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 dihglblem5a.b 𝐵 = ( Base ‘ 𝐾 )
2 dihglblem5a.m = ( meet ‘ 𝐾 )
3 dihglblem5a.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dihglblem5a.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
5 dihglblem5a.l = ( le ‘ 𝐾 )
6 dihglblem5a.j = ( join ‘ 𝐾 )
7 dihglblem5a.a 𝐴 = ( Atoms ‘ 𝐾 )
8 dihglblem5a.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
9 dihglblem5a.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
10 dihglblem5a.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
11 dihglblem5a.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
12 dihglblem5a.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑞 )
13 dihglblem5a.o 0 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
14 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → 𝐾 ∈ HL )
15 14 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → 𝐾 ∈ Lat )
16 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → 𝑋𝐵 )
17 simp3l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → 𝑌𝐵 )
18 1 5 2 latmle1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) 𝑋 )
19 15 16 17 18 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( 𝑋 𝑌 ) 𝑋 )
20 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
21 1 2 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
22 15 16 17 21 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
23 1 5 3 4 dihord ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 𝑌 ) ∈ 𝐵𝑋𝐵 ) → ( ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ⊆ ( 𝐼𝑋 ) ↔ ( 𝑋 𝑌 ) 𝑋 ) )
24 20 22 16 23 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ⊆ ( 𝐼𝑋 ) ↔ ( 𝑋 𝑌 ) 𝑋 ) )
25 19 24 mpbird ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ⊆ ( 𝐼𝑋 ) )
26 1 5 2 latmle2 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) 𝑌 )
27 15 16 17 26 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( 𝑋 𝑌 ) 𝑌 )
28 1 5 3 4 dihord ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 𝑌 ) ∈ 𝐵𝑌𝐵 ) → ( ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ⊆ ( 𝐼𝑌 ) ↔ ( 𝑋 𝑌 ) 𝑌 ) )
29 20 22 17 28 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ⊆ ( 𝐼𝑌 ) ↔ ( 𝑋 𝑌 ) 𝑌 ) )
30 27 29 mpbird ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ⊆ ( 𝐼𝑌 ) )
31 25 30 ssind ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ⊆ ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑌 ) ) )
32 3 4 dihvalrel ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → Rel ( 𝐼𝑋 ) )
33 relin1 ( Rel ( 𝐼𝑋 ) → Rel ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑌 ) ) )
34 32 33 syl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → Rel ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑌 ) ) )
35 34 3ad2ant1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → Rel ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑌 ) ) )
36 elin ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑌 ) ) ↔ ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑋 ) ∧ ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑌 ) ) )
37 1 5 6 2 7 3 lhpmcvr2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ∃ 𝑞𝐴 ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) )
38 37 3adant3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ∃ 𝑞𝐴 ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) )
39 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
40 simpl2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ) → ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) )
41 simprl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ) → 𝑞𝐴 )
42 simprrl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ) → ¬ 𝑞 𝑊 )
43 41 42 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ) → ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) )
44 simprrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ) → ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 )
45 vex 𝑓 ∈ V
46 vex 𝑠 ∈ V
47 1 5 6 2 7 3 8 9 10 11 4 12 45 46 dihopelvalc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑋 ) ↔ ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ) )
48 39 40 43 44 47 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑋 ) ↔ ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ) )
49 simpr ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) → ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 )
50 48 49 syl6bi ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑋 ) → ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) )
51 simpl3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ) → ( 𝑌𝐵𝑌 𝑊 ) )
52 1 5 3 9 10 13 4 dihopelvalbN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑌 ) ↔ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) )
53 39 51 52 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑌 ) ↔ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) )
54 53 biimpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑌 ) → ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) )
55 simprll ( ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) → 𝑓𝑇 )
56 55 3ad2ant3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝑓𝑇 )
57 simp3rr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝑠 = 0 )
58 57 fveq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑠𝐺 ) = ( 0𝐺 ) )
59 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
60 5 7 3 8 lhpocnel2 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
61 59 60 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
62 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝑞𝐴 )
63 simp2rl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ¬ 𝑞 𝑊 )
64 5 7 3 9 12 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ) → 𝐺𝑇 )
65 59 61 62 63 64 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝐺𝑇 )
66 13 1 tendo02 ( 𝐺𝑇 → ( 0𝐺 ) = ( I ↾ 𝐵 ) )
67 65 66 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 0𝐺 ) = ( I ↾ 𝐵 ) )
68 58 67 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑠𝐺 ) = ( I ↾ 𝐵 ) )
69 68 cnveqd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑠𝐺 ) = ( I ↾ 𝐵 ) )
70 cnvresid ( I ↾ 𝐵 ) = ( I ↾ 𝐵 )
71 69 70 eqtrdi ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑠𝐺 ) = ( I ↾ 𝐵 ) )
72 71 coeq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑓 ( 𝑠𝐺 ) ) = ( 𝑓 ∘ ( I ↾ 𝐵 ) ) )
73 1 3 9 ltrn1o ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓𝑇 ) → 𝑓 : 𝐵1-1-onto𝐵 )
74 59 56 73 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝑓 : 𝐵1-1-onto𝐵 )
75 f1of ( 𝑓 : 𝐵1-1-onto𝐵𝑓 : 𝐵𝐵 )
76 fcoi1 ( 𝑓 : 𝐵𝐵 → ( 𝑓 ∘ ( I ↾ 𝐵 ) ) = 𝑓 )
77 74 75 76 3syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑓 ∘ ( I ↾ 𝐵 ) ) = 𝑓 )
78 72 77 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑓 ( 𝑠𝐺 ) ) = 𝑓 )
79 78 fveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) = ( 𝑅𝑓 ) )
80 simp3l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 )
81 79 80 eqbrtrrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅𝑓 ) 𝑋 )
82 simprlr ( ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) → ( 𝑅𝑓 ) 𝑌 )
83 82 3ad2ant3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅𝑓 ) 𝑌 )
84 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝐾 ∈ HL )
85 84 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝐾 ∈ Lat )
86 1 3 9 10 trlcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓𝑇 ) → ( 𝑅𝑓 ) ∈ 𝐵 )
87 59 56 86 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅𝑓 ) ∈ 𝐵 )
88 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝑋𝐵 )
89 simp13l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝑌𝐵 )
90 1 5 2 latlem12 ( ( 𝐾 ∈ Lat ∧ ( ( 𝑅𝑓 ) ∈ 𝐵𝑋𝐵𝑌𝐵 ) ) → ( ( ( 𝑅𝑓 ) 𝑋 ∧ ( 𝑅𝑓 ) 𝑌 ) ↔ ( 𝑅𝑓 ) ( 𝑋 𝑌 ) ) )
91 85 87 88 89 90 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( ( ( 𝑅𝑓 ) 𝑋 ∧ ( 𝑅𝑓 ) 𝑌 ) ↔ ( 𝑅𝑓 ) ( 𝑋 𝑌 ) ) )
92 81 83 91 mpbi2and ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅𝑓 ) ( 𝑋 𝑌 ) )
93 56 92 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑌 ) ) )
94 85 88 89 21 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
95 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝑊𝐻 )
96 1 3 lhpbase ( 𝑊𝐻𝑊𝐵 )
97 95 96 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝑊𝐵 )
98 85 88 89 26 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑋 𝑌 ) 𝑌 )
99 simp13r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → 𝑌 𝑊 )
100 1 5 85 94 89 97 98 99 lattrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑋 𝑌 ) 𝑊 )
101 1 5 3 9 10 13 4 dihopelvalbN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑋 𝑌 ) ∈ 𝐵 ∧ ( 𝑋 𝑌 ) 𝑊 ) ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ↔ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑌 ) ) ∧ 𝑠 = 0 ) ) )
102 59 94 100 101 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ↔ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑌 ) ) ∧ 𝑠 = 0 ) ) )
103 93 57 102 mpbir2and ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑌 ) ) )
104 103 3expia ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ) → ( ( ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑌 ) ∧ 𝑠 = 0 ) ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ) )
105 50 54 104 syl2and ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) ∧ ( 𝑞𝐴 ∧ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ) → ( ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑋 ) ∧ ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑌 ) ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ) )
106 38 105 rexlimddv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑋 ) ∧ ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑌 ) ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ) )
107 36 106 syl5bi ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑌 ) ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑌 ) ) ) )
108 35 107 relssdv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑌 ) ) ⊆ ( 𝐼 ‘ ( 𝑋 𝑌 ) ) )
109 31 108 eqssd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑌𝐵𝑌 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 𝑌 ) ) = ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑌 ) ) )