| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihglblem5a.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dihglblem5a.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 3 |
|
dihglblem5a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
dihglblem5a.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
dihglblem5a.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 6 |
|
dihglblem5a.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 7 |
|
dihglblem5a.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 8 |
|
dihglblem5a.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
dihglblem5a.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 10 |
|
dihglblem5a.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
| 11 |
|
dihglblem5a.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 12 |
|
dihglblem5a.g |
⊢ 𝐺 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑞 ) |
| 13 |
|
dihglblem5a.o |
⊢ 0 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
| 14 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 15 |
14
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
| 16 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → 𝑋 ∈ 𝐵 ) |
| 17 |
1 3
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
| 18 |
17
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐵 ) |
| 19 |
1 5 2
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ≤ 𝑋 ) |
| 20 |
15 16 18 19
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑊 ) ≤ 𝑋 ) |
| 21 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 22 |
1 2
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
| 23 |
15 16 18 22
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
| 24 |
1 5 3 4
|
dihord |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ⊆ ( 𝐼 ‘ 𝑋 ) ↔ ( 𝑋 ∧ 𝑊 ) ≤ 𝑋 ) ) |
| 25 |
21 23 16 24
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ⊆ ( 𝐼 ‘ 𝑋 ) ↔ ( 𝑋 ∧ 𝑊 ) ≤ 𝑋 ) ) |
| 26 |
20 25
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ⊆ ( 𝐼 ‘ 𝑋 ) ) |
| 27 |
1 5 2
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) |
| 28 |
15 16 18 27
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) |
| 29 |
1 5 3 4
|
dihord |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ⊆ ( 𝐼 ‘ 𝑊 ) ↔ ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) ) |
| 30 |
21 23 18 29
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ⊆ ( 𝐼 ‘ 𝑊 ) ↔ ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) ) |
| 31 |
28 30
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ⊆ ( 𝐼 ‘ 𝑊 ) ) |
| 32 |
26 31
|
ssind |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ⊆ ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑊 ) ) ) |
| 33 |
3 4
|
dihvalrel |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → Rel ( 𝐼 ‘ 𝑋 ) ) |
| 34 |
|
relin1 |
⊢ ( Rel ( 𝐼 ‘ 𝑋 ) → Rel ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑊 ) ) ) |
| 35 |
33 34
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → Rel ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑊 ) ) ) |
| 36 |
35
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → Rel ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑊 ) ) ) |
| 37 |
|
elin |
⊢ ( 〈 𝑓 , 𝑠 〉 ∈ ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑊 ) ) ↔ ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑊 ) ) ) |
| 38 |
1 5 6 2 7 3
|
lhpmcvr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
| 39 |
|
vex |
⊢ 𝑓 ∈ V |
| 40 |
|
vex |
⊢ 𝑠 ∈ V |
| 41 |
1 5 6 2 7 3 8 9 10 11 4 12 39 40
|
dihopelvalc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑋 ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ) ) |
| 42 |
|
id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 43 |
17
|
adantl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ 𝐵 ) |
| 44 |
1 5
|
latref |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐵 ) → 𝑊 ≤ 𝑊 ) |
| 45 |
14 17 44
|
syl2an |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ≤ 𝑊 ) |
| 46 |
1 5 3 9 10 13 4
|
dihopelvalbN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑊 ≤ 𝑊 ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑊 ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) |
| 47 |
42 43 45 46
|
syl12anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑊 ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) |
| 48 |
47
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑊 ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) |
| 49 |
41 48
|
anbi12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑊 ) ) ↔ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) ) |
| 50 |
|
simprll |
⊢ ( ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) → 𝑓 ∈ 𝑇 ) |
| 51 |
50
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → 𝑓 ∈ 𝑇 ) |
| 52 |
|
simprrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → 𝑠 = 0 ) |
| 53 |
52
|
fveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑠 ‘ 𝐺 ) = ( 0 ‘ 𝐺 ) ) |
| 54 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 55 |
5 7 3 8
|
lhpocnel2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 56 |
54 55
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 57 |
|
simpl3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) |
| 58 |
5 7 3 9 12
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) → 𝐺 ∈ 𝑇 ) |
| 59 |
54 56 57 58
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → 𝐺 ∈ 𝑇 ) |
| 60 |
13 1
|
tendo02 |
⊢ ( 𝐺 ∈ 𝑇 → ( 0 ‘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
| 61 |
59 60
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 0 ‘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
| 62 |
53 61
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑠 ‘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
| 63 |
62
|
cnveqd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ◡ ( 𝑠 ‘ 𝐺 ) = ◡ ( I ↾ 𝐵 ) ) |
| 64 |
|
cnvresid |
⊢ ◡ ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) |
| 65 |
63 64
|
eqtrdi |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ◡ ( 𝑠 ‘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
| 66 |
65
|
coeq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) = ( 𝑓 ∘ ( I ↾ 𝐵 ) ) ) |
| 67 |
1 3 9
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → 𝑓 : 𝐵 –1-1-onto→ 𝐵 ) |
| 68 |
54 51 67
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → 𝑓 : 𝐵 –1-1-onto→ 𝐵 ) |
| 69 |
|
f1of |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐵 → 𝑓 : 𝐵 ⟶ 𝐵 ) |
| 70 |
|
fcoi1 |
⊢ ( 𝑓 : 𝐵 ⟶ 𝐵 → ( 𝑓 ∘ ( I ↾ 𝐵 ) ) = 𝑓 ) |
| 71 |
68 69 70
|
3syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑓 ∘ ( I ↾ 𝐵 ) ) = 𝑓 ) |
| 72 |
66 71
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) = 𝑓 ) |
| 73 |
72
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) = ( 𝑅 ‘ 𝑓 ) ) |
| 74 |
|
simprlr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) |
| 75 |
73 74
|
eqbrtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ) |
| 76 |
5 3 9 10
|
trlle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) |
| 77 |
54 51 76
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) |
| 78 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → 𝐾 ∈ HL ) |
| 79 |
78
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → 𝐾 ∈ Lat ) |
| 80 |
1 3 9 10
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝑅 ‘ 𝑓 ) ∈ 𝐵 ) |
| 81 |
54 51 80
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅 ‘ 𝑓 ) ∈ 𝐵 ) |
| 82 |
|
simpl2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 83 |
|
simpl1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → 𝑊 ∈ 𝐻 ) |
| 84 |
83 17
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → 𝑊 ∈ 𝐵 ) |
| 85 |
1 5 2
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑅 ‘ 𝑓 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ↔ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ) |
| 86 |
79 81 82 84 85
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( ( ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ↔ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ) |
| 87 |
75 77 86
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) |
| 88 |
51 87
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ) |
| 89 |
79 82 84 22
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
| 90 |
79 82 84 27
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) |
| 91 |
1 5 3 9 10 13 4
|
dihopelvalbN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑠 = 0 ) ) ) |
| 92 |
54 89 90 91
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑠 = 0 ) ) ) |
| 93 |
88 52 92
|
mpbir2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) ) → 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) |
| 94 |
93
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( ( ( ( 𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ∘ ◡ ( 𝑠 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑊 ) ∧ 𝑠 = 0 ) ) → 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |
| 95 |
49 94
|
sylbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑊 ) ) → 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |
| 96 |
95
|
3expia |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑊 ) ) → 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
| 97 |
96
|
exp4c |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝑞 ∈ 𝐴 → ( ¬ 𝑞 ≤ 𝑊 → ( ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 → ( ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑊 ) ) → 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) ) ) |
| 98 |
97
|
imp4a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝑞 ∈ 𝐴 → ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑊 ) ) → 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) ) |
| 99 |
98
|
rexlimdv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑊 ) ) → 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
| 100 |
38 99
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑋 ) ∧ 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑊 ) ) → 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |
| 101 |
37 100
|
biimtrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑊 ) ) → 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |
| 102 |
36 101
|
relssdv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑊 ) ) ⊆ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) |
| 103 |
32 102
|
eqssd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑊 ) ) ) |