Metamath Proof Explorer


Theorem dihglblem5apreN

Description: A conjunction property of isomorphism H. TODO: reduce antecedent size; general review for shorter proof. (Contributed by NM, 21-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihglblem5a.b 𝐵 = ( Base ‘ 𝐾 )
dihglblem5a.m = ( meet ‘ 𝐾 )
dihglblem5a.h 𝐻 = ( LHyp ‘ 𝐾 )
dihglblem5a.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihglblem5a.l = ( le ‘ 𝐾 )
dihglblem5a.j = ( join ‘ 𝐾 )
dihglblem5a.a 𝐴 = ( Atoms ‘ 𝐾 )
dihglblem5a.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
dihglblem5a.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dihglblem5a.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
dihglblem5a.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dihglblem5a.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑞 )
dihglblem5a.o 0 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
Assertion dihglblem5apreN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 𝑊 ) ) = ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 dihglblem5a.b 𝐵 = ( Base ‘ 𝐾 )
2 dihglblem5a.m = ( meet ‘ 𝐾 )
3 dihglblem5a.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dihglblem5a.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
5 dihglblem5a.l = ( le ‘ 𝐾 )
6 dihglblem5a.j = ( join ‘ 𝐾 )
7 dihglblem5a.a 𝐴 = ( Atoms ‘ 𝐾 )
8 dihglblem5a.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
9 dihglblem5a.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
10 dihglblem5a.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
11 dihglblem5a.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
12 dihglblem5a.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑞 )
13 dihglblem5a.o 0 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
14 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
15 14 ad2antrr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → 𝐾 ∈ Lat )
16 simprl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → 𝑋𝐵 )
17 1 3 lhpbase ( 𝑊𝐻𝑊𝐵 )
18 17 ad2antlr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → 𝑊𝐵 )
19 1 5 2 latmle1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵 ) → ( 𝑋 𝑊 ) 𝑋 )
20 15 16 18 19 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝑋 𝑊 ) 𝑋 )
21 simpl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
22 1 2 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵 ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
23 15 16 18 22 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
24 1 5 3 4 dihord ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 𝑊 ) ∈ 𝐵𝑋𝐵 ) → ( ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ⊆ ( 𝐼𝑋 ) ↔ ( 𝑋 𝑊 ) 𝑋 ) )
25 21 23 16 24 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ⊆ ( 𝐼𝑋 ) ↔ ( 𝑋 𝑊 ) 𝑋 ) )
26 20 25 mpbird ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ⊆ ( 𝐼𝑋 ) )
27 1 5 2 latmle2 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵 ) → ( 𝑋 𝑊 ) 𝑊 )
28 15 16 18 27 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝑋 𝑊 ) 𝑊 )
29 1 5 3 4 dihord ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 𝑊 ) ∈ 𝐵𝑊𝐵 ) → ( ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ⊆ ( 𝐼𝑊 ) ↔ ( 𝑋 𝑊 ) 𝑊 ) )
30 21 23 18 29 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ⊆ ( 𝐼𝑊 ) ↔ ( 𝑋 𝑊 ) 𝑊 ) )
31 28 30 mpbird ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ⊆ ( 𝐼𝑊 ) )
32 26 31 ssind ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ⊆ ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑊 ) ) )
33 3 4 dihvalrel ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → Rel ( 𝐼𝑋 ) )
34 relin1 ( Rel ( 𝐼𝑋 ) → Rel ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑊 ) ) )
35 33 34 syl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → Rel ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑊 ) ) )
36 35 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → Rel ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑊 ) ) )
37 elin ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑊 ) ) ↔ ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑋 ) ∧ ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑊 ) ) )
38 1 5 6 2 7 3 lhpmcvr2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ∃ 𝑞𝐴 ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) )
39 vex 𝑓 ∈ V
40 vex 𝑠 ∈ V
41 1 5 6 2 7 3 8 9 10 11 4 12 39 40 dihopelvalc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑋 ) ↔ ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ) )
42 id ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
43 17 adantl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑊𝐵 )
44 1 5 latref ( ( 𝐾 ∈ Lat ∧ 𝑊𝐵 ) → 𝑊 𝑊 )
45 14 17 44 syl2an ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑊 𝑊 )
46 1 5 3 9 10 13 4 dihopelvalbN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑊𝐵𝑊 𝑊 ) ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑊 ) ↔ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) )
47 42 43 45 46 syl12anc ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑊 ) ↔ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) )
48 47 3ad2ant1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑊 ) ↔ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) )
49 41 48 anbi12d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑋 ) ∧ ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑊 ) ) ↔ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) )
50 simprll ( ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) → 𝑓𝑇 )
51 50 adantl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → 𝑓𝑇 )
52 simprrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → 𝑠 = 0 )
53 52 fveq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑠𝐺 ) = ( 0𝐺 ) )
54 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
55 5 7 3 8 lhpocnel2 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
56 54 55 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
57 simpl3l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) )
58 5 7 3 9 12 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ) → 𝐺𝑇 )
59 54 56 57 58 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → 𝐺𝑇 )
60 13 1 tendo02 ( 𝐺𝑇 → ( 0𝐺 ) = ( I ↾ 𝐵 ) )
61 59 60 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 0𝐺 ) = ( I ↾ 𝐵 ) )
62 53 61 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑠𝐺 ) = ( I ↾ 𝐵 ) )
63 62 cnveqd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑠𝐺 ) = ( I ↾ 𝐵 ) )
64 cnvresid ( I ↾ 𝐵 ) = ( I ↾ 𝐵 )
65 63 64 eqtrdi ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑠𝐺 ) = ( I ↾ 𝐵 ) )
66 65 coeq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑓 ( 𝑠𝐺 ) ) = ( 𝑓 ∘ ( I ↾ 𝐵 ) ) )
67 1 3 9 ltrn1o ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓𝑇 ) → 𝑓 : 𝐵1-1-onto𝐵 )
68 54 51 67 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → 𝑓 : 𝐵1-1-onto𝐵 )
69 f1of ( 𝑓 : 𝐵1-1-onto𝐵𝑓 : 𝐵𝐵 )
70 fcoi1 ( 𝑓 : 𝐵𝐵 → ( 𝑓 ∘ ( I ↾ 𝐵 ) ) = 𝑓 )
71 68 69 70 3syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑓 ∘ ( I ↾ 𝐵 ) ) = 𝑓 )
72 66 71 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑓 ( 𝑠𝐺 ) ) = 𝑓 )
73 72 fveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) = ( 𝑅𝑓 ) )
74 simprlr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 )
75 73 74 eqbrtrrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅𝑓 ) 𝑋 )
76 5 3 9 10 trlle ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓𝑇 ) → ( 𝑅𝑓 ) 𝑊 )
77 54 51 76 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅𝑓 ) 𝑊 )
78 simpl1l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → 𝐾 ∈ HL )
79 78 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → 𝐾 ∈ Lat )
80 1 3 9 10 trlcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓𝑇 ) → ( 𝑅𝑓 ) ∈ 𝐵 )
81 54 51 80 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅𝑓 ) ∈ 𝐵 )
82 simpl2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → 𝑋𝐵 )
83 simpl1r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → 𝑊𝐻 )
84 83 17 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → 𝑊𝐵 )
85 1 5 2 latlem12 ( ( 𝐾 ∈ Lat ∧ ( ( 𝑅𝑓 ) ∈ 𝐵𝑋𝐵𝑊𝐵 ) ) → ( ( ( 𝑅𝑓 ) 𝑋 ∧ ( 𝑅𝑓 ) 𝑊 ) ↔ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) )
86 79 81 82 84 85 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( ( ( 𝑅𝑓 ) 𝑋 ∧ ( 𝑅𝑓 ) 𝑊 ) ↔ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) )
87 75 77 86 mpbi2and ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑅𝑓 ) ( 𝑋 𝑊 ) )
88 51 87 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) )
89 79 82 84 22 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
90 79 82 84 27 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( 𝑋 𝑊 ) 𝑊 )
91 1 5 3 9 10 13 4 dihopelvalbN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑋 𝑊 ) ∈ 𝐵 ∧ ( 𝑋 𝑊 ) 𝑊 ) ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ↔ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ∧ 𝑠 = 0 ) ) )
92 54 89 90 91 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ↔ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) ( 𝑋 𝑊 ) ) ∧ 𝑠 = 0 ) ) )
93 88 52 92 mpbir2and ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) )
94 93 ex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( ( ( 𝑓𝑇𝑠𝐸 ) ∧ ( 𝑅 ‘ ( 𝑓 ( 𝑠𝐺 ) ) ) 𝑋 ) ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑊 ) ∧ 𝑠 = 0 ) ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) )
95 49 94 sylbid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑋 ) ∧ ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑊 ) ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) )
96 95 3expia ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( ( ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) → ( ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑋 ) ∧ ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑊 ) ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ) )
97 96 exp4c ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝑞𝐴 → ( ¬ 𝑞 𝑊 → ( ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 → ( ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑋 ) ∧ ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑊 ) ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ) ) ) )
98 97 imp4a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝑞𝐴 → ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) → ( ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑋 ) ∧ ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑊 ) ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ) ) )
99 98 rexlimdv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( ∃ 𝑞𝐴 ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) → ( ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑋 ) ∧ ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑊 ) ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ) )
100 38 99 mpd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑋 ) ∧ ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑊 ) ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) )
101 37 100 syl5bi ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑊 ) ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) )
102 36 101 relssdv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑊 ) ) ⊆ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) )
103 32 102 eqssd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 𝑊 ) ) = ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑊 ) ) )