Step |
Hyp |
Ref |
Expression |
1 |
|
dihglblem5a.b |
|
2 |
|
dihglblem5a.m |
|
3 |
|
dihglblem5a.h |
|
4 |
|
dihglblem5a.i |
|
5 |
|
dihglblem5a.l |
|
6 |
|
dihglblem5a.j |
|
7 |
|
dihglblem5a.a |
|
8 |
|
dihglblem5a.p |
|
9 |
|
dihglblem5a.t |
|
10 |
|
dihglblem5a.r |
|
11 |
|
dihglblem5a.e |
|
12 |
|
dihglblem5a.g |
|
13 |
|
dihglblem5a.o |
|
14 |
|
hllat |
|
15 |
14
|
ad2antrr |
|
16 |
|
simprl |
|
17 |
1 3
|
lhpbase |
|
18 |
17
|
ad2antlr |
|
19 |
1 5 2
|
latmle1 |
|
20 |
15 16 18 19
|
syl3anc |
|
21 |
|
simpl |
|
22 |
1 2
|
latmcl |
|
23 |
15 16 18 22
|
syl3anc |
|
24 |
1 5 3 4
|
dihord |
|
25 |
21 23 16 24
|
syl3anc |
|
26 |
20 25
|
mpbird |
|
27 |
1 5 2
|
latmle2 |
|
28 |
15 16 18 27
|
syl3anc |
|
29 |
1 5 3 4
|
dihord |
|
30 |
21 23 18 29
|
syl3anc |
|
31 |
28 30
|
mpbird |
|
32 |
26 31
|
ssind |
|
33 |
3 4
|
dihvalrel |
|
34 |
|
relin1 |
|
35 |
33 34
|
syl |
|
36 |
35
|
adantr |
|
37 |
|
elin |
|
38 |
1 5 6 2 7 3
|
lhpmcvr2 |
|
39 |
|
vex |
|
40 |
|
vex |
|
41 |
1 5 6 2 7 3 8 9 10 11 4 12 39 40
|
dihopelvalc |
|
42 |
|
id |
|
43 |
17
|
adantl |
|
44 |
1 5
|
latref |
|
45 |
14 17 44
|
syl2an |
|
46 |
1 5 3 9 10 13 4
|
dihopelvalbN |
|
47 |
42 43 45 46
|
syl12anc |
|
48 |
47
|
3ad2ant1 |
|
49 |
41 48
|
anbi12d |
|
50 |
|
simprll |
|
51 |
50
|
adantl |
|
52 |
|
simprrr |
|
53 |
52
|
fveq1d |
|
54 |
|
simpl1 |
|
55 |
5 7 3 8
|
lhpocnel2 |
|
56 |
54 55
|
syl |
|
57 |
|
simpl3l |
|
58 |
5 7 3 9 12
|
ltrniotacl |
|
59 |
54 56 57 58
|
syl3anc |
|
60 |
13 1
|
tendo02 |
|
61 |
59 60
|
syl |
|
62 |
53 61
|
eqtrd |
|
63 |
62
|
cnveqd |
|
64 |
|
cnvresid |
|
65 |
63 64
|
eqtrdi |
|
66 |
65
|
coeq2d |
|
67 |
1 3 9
|
ltrn1o |
|
68 |
54 51 67
|
syl2anc |
|
69 |
|
f1of |
|
70 |
|
fcoi1 |
|
71 |
68 69 70
|
3syl |
|
72 |
66 71
|
eqtrd |
|
73 |
72
|
fveq2d |
|
74 |
|
simprlr |
|
75 |
73 74
|
eqbrtrrd |
|
76 |
5 3 9 10
|
trlle |
|
77 |
54 51 76
|
syl2anc |
|
78 |
|
simpl1l |
|
79 |
78
|
hllatd |
|
80 |
1 3 9 10
|
trlcl |
|
81 |
54 51 80
|
syl2anc |
|
82 |
|
simpl2l |
|
83 |
|
simpl1r |
|
84 |
83 17
|
syl |
|
85 |
1 5 2
|
latlem12 |
|
86 |
79 81 82 84 85
|
syl13anc |
|
87 |
75 77 86
|
mpbi2and |
|
88 |
51 87
|
jca |
|
89 |
79 82 84 22
|
syl3anc |
|
90 |
79 82 84 27
|
syl3anc |
|
91 |
1 5 3 9 10 13 4
|
dihopelvalbN |
|
92 |
54 89 90 91
|
syl12anc |
|
93 |
88 52 92
|
mpbir2and |
|
94 |
93
|
ex |
|
95 |
49 94
|
sylbid |
|
96 |
95
|
3expia |
|
97 |
96
|
exp4c |
|
98 |
97
|
imp4a |
|
99 |
98
|
rexlimdv |
|
100 |
38 99
|
mpd |
|
101 |
37 100
|
syl5bi |
|
102 |
36 101
|
relssdv |
|
103 |
32 102
|
eqssd |
|