Step |
Hyp |
Ref |
Expression |
1 |
|
dihglblem5a.b |
|
2 |
|
dihglblem5a.m |
|
3 |
|
dihglblem5a.h |
|
4 |
|
dihglblem5a.i |
|
5 |
|
dihglblem5a.l |
|
6 |
|
dihglblem5a.j |
|
7 |
|
dihglblem5a.a |
|
8 |
|
dihglblem5a.p |
|
9 |
|
dihglblem5a.t |
|
10 |
|
dihglblem5a.r |
|
11 |
|
dihglblem5a.e |
|
12 |
|
dihglblem5a.g |
|
13 |
|
dihglblem5a.o |
|
14 |
|
simp1l |
|
15 |
14
|
hllatd |
|
16 |
|
simp2l |
|
17 |
|
simp3l |
|
18 |
1 5 2
|
latmle1 |
|
19 |
15 16 17 18
|
syl3anc |
|
20 |
|
simp1 |
|
21 |
1 2
|
latmcl |
|
22 |
15 16 17 21
|
syl3anc |
|
23 |
1 5 3 4
|
dihord |
|
24 |
20 22 16 23
|
syl3anc |
|
25 |
19 24
|
mpbird |
|
26 |
1 5 2
|
latmle2 |
|
27 |
15 16 17 26
|
syl3anc |
|
28 |
1 5 3 4
|
dihord |
|
29 |
20 22 17 28
|
syl3anc |
|
30 |
27 29
|
mpbird |
|
31 |
25 30
|
ssind |
|
32 |
3 4
|
dihvalrel |
|
33 |
|
relin1 |
|
34 |
32 33
|
syl |
|
35 |
34
|
3ad2ant1 |
|
36 |
|
elin |
|
37 |
1 5 6 2 7 3
|
lhpmcvr2 |
|
38 |
37
|
3adant3 |
|
39 |
|
simpl1 |
|
40 |
|
simpl2 |
|
41 |
|
simprl |
|
42 |
|
simprrl |
|
43 |
41 42
|
jca |
|
44 |
|
simprrr |
|
45 |
|
vex |
|
46 |
|
vex |
|
47 |
1 5 6 2 7 3 8 9 10 11 4 12 45 46
|
dihopelvalc |
|
48 |
39 40 43 44 47
|
syl112anc |
|
49 |
|
simpr |
|
50 |
48 49
|
syl6bi |
|
51 |
|
simpl3 |
|
52 |
1 5 3 9 10 13 4
|
dihopelvalbN |
|
53 |
39 51 52
|
syl2anc |
|
54 |
53
|
biimpd |
|
55 |
|
simprll |
|
56 |
55
|
3ad2ant3 |
|
57 |
|
simp3rr |
|
58 |
57
|
fveq1d |
|
59 |
|
simp11 |
|
60 |
5 7 3 8
|
lhpocnel2 |
|
61 |
59 60
|
syl |
|
62 |
|
simp2l |
|
63 |
|
simp2rl |
|
64 |
5 7 3 9 12
|
ltrniotacl |
|
65 |
59 61 62 63 64
|
syl112anc |
|
66 |
13 1
|
tendo02 |
|
67 |
65 66
|
syl |
|
68 |
58 67
|
eqtrd |
|
69 |
68
|
cnveqd |
|
70 |
|
cnvresid |
|
71 |
69 70
|
eqtrdi |
|
72 |
71
|
coeq2d |
|
73 |
1 3 9
|
ltrn1o |
|
74 |
59 56 73
|
syl2anc |
|
75 |
|
f1of |
|
76 |
|
fcoi1 |
|
77 |
74 75 76
|
3syl |
|
78 |
72 77
|
eqtrd |
|
79 |
78
|
fveq2d |
|
80 |
|
simp3l |
|
81 |
79 80
|
eqbrtrrd |
|
82 |
|
simprlr |
|
83 |
82
|
3ad2ant3 |
|
84 |
|
simp11l |
|
85 |
84
|
hllatd |
|
86 |
1 3 9 10
|
trlcl |
|
87 |
59 56 86
|
syl2anc |
|
88 |
|
simp12l |
|
89 |
|
simp13l |
|
90 |
1 5 2
|
latlem12 |
|
91 |
85 87 88 89 90
|
syl13anc |
|
92 |
81 83 91
|
mpbi2and |
|
93 |
56 92
|
jca |
|
94 |
85 88 89 21
|
syl3anc |
|
95 |
|
simp11r |
|
96 |
1 3
|
lhpbase |
|
97 |
95 96
|
syl |
|
98 |
85 88 89 26
|
syl3anc |
|
99 |
|
simp13r |
|
100 |
1 5 85 94 89 97 98 99
|
lattrd |
|
101 |
1 5 3 9 10 13 4
|
dihopelvalbN |
|
102 |
59 94 100 101
|
syl12anc |
|
103 |
93 57 102
|
mpbir2and |
|
104 |
103
|
3expia |
|
105 |
50 54 104
|
syl2and |
|
106 |
38 105
|
rexlimddv |
|
107 |
36 106
|
syl5bi |
|
108 |
35 107
|
relssdv |
|
109 |
31 108
|
eqssd |
|