Metamath Proof Explorer


Theorem dihwN

Description: Value of isomorphism H at the fiducial hyperplane W . (Contributed by NM, 25-Aug-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihw.b B = Base K
dihw.h H = LHyp K
dihw.t T = LTrn K W
dihw.o 0 ˙ = f T I B
dihw.i I = DIsoH K W
dihw.k φ K HL W H
Assertion dihwN φ I W = T × 0 ˙

Proof

Step Hyp Ref Expression
1 dihw.b B = Base K
2 dihw.h H = LHyp K
3 dihw.t T = LTrn K W
4 dihw.o 0 ˙ = f T I B
5 dihw.i I = DIsoH K W
6 dihw.k φ K HL W H
7 6 simprd φ W H
8 1 2 lhpbase W H W B
9 7 8 syl φ W B
10 6 simpld φ K HL
11 10 hllatd φ K Lat
12 eqid K = K
13 1 12 latref K Lat W B W K W
14 11 9 13 syl2anc φ W K W
15 9 14 jca φ W B W K W
16 eqid DIsoB K W = DIsoB K W
17 1 12 2 5 16 dihvalb K HL W H W B W K W I W = DIsoB K W W
18 6 15 17 syl2anc φ I W = DIsoB K W W
19 eqid DIsoA K W = DIsoA K W
20 1 12 2 3 4 19 16 dibval2 K HL W H W B W K W DIsoB K W W = DIsoA K W W × 0 ˙
21 6 15 20 syl2anc φ DIsoB K W W = DIsoA K W W × 0 ˙
22 eqid trL K W = trL K W
23 1 12 2 3 22 19 diaval K HL W H W B W K W DIsoA K W W = g T | trL K W g K W
24 6 15 23 syl2anc φ DIsoA K W W = g T | trL K W g K W
25 12 2 3 22 trlle K HL W H g T trL K W g K W
26 6 25 sylan φ g T trL K W g K W
27 26 ralrimiva φ g T trL K W g K W
28 rabid2 T = g T | trL K W g K W g T trL K W g K W
29 27 28 sylibr φ T = g T | trL K W g K W
30 24 29 eqtr4d φ DIsoA K W W = T
31 30 xpeq1d φ DIsoA K W W × 0 ˙ = T × 0 ˙
32 18 21 31 3eqtrd φ I W = T × 0 ˙