Metamath Proof Explorer


Theorem dih1cnv

Description: The isomorphism H converse value of the full vector space is the lattice one. (Contributed by NM, 19-Jun-2014)

Ref Expression
Hypotheses dih1cnv.h 𝐻 = ( LHyp ‘ 𝐾 )
dih1cnv.m 1 = ( 1. ‘ 𝐾 )
dih1cnv.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dih1cnv.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dih1cnv.v 𝑉 = ( Base ‘ 𝑈 )
Assertion dih1cnv ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝐼𝑉 ) = 1 )

Proof

Step Hyp Ref Expression
1 dih1cnv.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dih1cnv.m 1 = ( 1. ‘ 𝐾 )
3 dih1cnv.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
4 dih1cnv.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 dih1cnv.v 𝑉 = ( Base ‘ 𝑈 )
6 2 1 3 4 5 dih1 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝐼1 ) = 𝑉 )
7 6 fveq2d ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝐼 ‘ ( 𝐼1 ) ) = ( 𝐼𝑉 ) )
8 hlop ( 𝐾 ∈ HL → 𝐾 ∈ OP )
9 8 adantr ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐾 ∈ OP )
10 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
11 10 2 op1cl ( 𝐾 ∈ OP → 1 ∈ ( Base ‘ 𝐾 ) )
12 9 11 syl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 1 ∈ ( Base ‘ 𝐾 ) )
13 10 1 3 dihcnvid1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 1 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( 𝐼1 ) ) = 1 )
14 12 13 mpdan ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝐼 ‘ ( 𝐼1 ) ) = 1 )
15 7 14 eqtr3d ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝐼𝑉 ) = 1 )