Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrs2.h |
|- H = ( LHyp ` K ) |
2 |
|
lclkrs2.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lclkrs2.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lclkrs2.s |
|- S = ( LSubSp ` U ) |
5 |
|
lclkrs2.f |
|- F = ( LFnl ` U ) |
6 |
|
lclkrs2.l |
|- L = ( LKer ` U ) |
7 |
|
lclkrs2.d |
|- D = ( LDual ` U ) |
8 |
|
lclkrs2.t |
|- T = ( LSubSp ` D ) |
9 |
|
lclkrs2.c |
|- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
10 |
|
lclkrs2.r |
|- R = { g e. F | ( ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) /\ ( ._|_ ` ( L ` g ) ) C_ Q ) } |
11 |
|
lclkrs2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
lclkrs2.q |
|- ( ph -> Q e. S ) |
13 |
1 2 3 4 5 6 7 8 10 11 12
|
lclkrs |
|- ( ph -> R e. T ) |
14 |
|
simpl |
|- ( ( ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) /\ ( ._|_ ` ( L ` g ) ) C_ Q ) -> ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) ) |
15 |
14
|
a1i |
|- ( g e. F -> ( ( ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) /\ ( ._|_ ` ( L ` g ) ) C_ Q ) -> ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) ) ) |
16 |
15
|
ss2rabi |
|- { g e. F | ( ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) /\ ( ._|_ ` ( L ` g ) ) C_ Q ) } C_ { g e. F | ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) } |
17 |
|
fveq2 |
|- ( f = g -> ( L ` f ) = ( L ` g ) ) |
18 |
17
|
fveq2d |
|- ( f = g -> ( ._|_ ` ( L ` f ) ) = ( ._|_ ` ( L ` g ) ) ) |
19 |
18
|
fveq2d |
|- ( f = g -> ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) ) |
20 |
19 17
|
eqeq12d |
|- ( f = g -> ( ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) <-> ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) ) ) |
21 |
20
|
cbvrabv |
|- { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { g e. F | ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) } |
22 |
9 21
|
eqtri |
|- C = { g e. F | ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) } |
23 |
16 10 22
|
3sstr4i |
|- R C_ C |
24 |
13 23
|
jctir |
|- ( ph -> ( R e. T /\ R C_ C ) ) |