| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrs2.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | lclkrs2.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | lclkrs2.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | lclkrs2.s |  |-  S = ( LSubSp ` U ) | 
						
							| 5 |  | lclkrs2.f |  |-  F = ( LFnl ` U ) | 
						
							| 6 |  | lclkrs2.l |  |-  L = ( LKer ` U ) | 
						
							| 7 |  | lclkrs2.d |  |-  D = ( LDual ` U ) | 
						
							| 8 |  | lclkrs2.t |  |-  T = ( LSubSp ` D ) | 
						
							| 9 |  | lclkrs2.c |  |-  C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } | 
						
							| 10 |  | lclkrs2.r |  |-  R = { g e. F | ( ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) /\ ( ._|_ ` ( L ` g ) ) C_ Q ) } | 
						
							| 11 |  | lclkrs2.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | lclkrs2.q |  |-  ( ph -> Q e. S ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 10 11 12 | lclkrs |  |-  ( ph -> R e. T ) | 
						
							| 14 |  | simpl |  |-  ( ( ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) /\ ( ._|_ ` ( L ` g ) ) C_ Q ) -> ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) ) | 
						
							| 15 | 14 | a1i |  |-  ( g e. F -> ( ( ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) /\ ( ._|_ ` ( L ` g ) ) C_ Q ) -> ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) ) ) | 
						
							| 16 | 15 | ss2rabi |  |-  { g e. F | ( ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) /\ ( ._|_ ` ( L ` g ) ) C_ Q ) } C_ { g e. F | ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) } | 
						
							| 17 |  | fveq2 |  |-  ( f = g -> ( L ` f ) = ( L ` g ) ) | 
						
							| 18 | 17 | fveq2d |  |-  ( f = g -> ( ._|_ ` ( L ` f ) ) = ( ._|_ ` ( L ` g ) ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( f = g -> ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) ) | 
						
							| 20 | 19 17 | eqeq12d |  |-  ( f = g -> ( ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) <-> ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) ) ) | 
						
							| 21 | 20 | cbvrabv |  |-  { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { g e. F | ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) } | 
						
							| 22 | 9 21 | eqtri |  |-  C = { g e. F | ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) } | 
						
							| 23 | 16 10 22 | 3sstr4i |  |-  R C_ C | 
						
							| 24 | 13 23 | jctir |  |-  ( ph -> ( R e. T /\ R C_ C ) ) |