Metamath Proof Explorer


Theorem lclkrs2

Description: The set of functionals with closed kernels and majorizing the orthocomplement of a given subspace Q is a subspace of the dual space containing functionals with closed kernels. Note that R is the value given by mapdval . (Contributed by NM, 12-Mar-2015)

Ref Expression
Hypotheses lclkrs2.h
|- H = ( LHyp ` K )
lclkrs2.o
|- ._|_ = ( ( ocH ` K ) ` W )
lclkrs2.u
|- U = ( ( DVecH ` K ) ` W )
lclkrs2.s
|- S = ( LSubSp ` U )
lclkrs2.f
|- F = ( LFnl ` U )
lclkrs2.l
|- L = ( LKer ` U )
lclkrs2.d
|- D = ( LDual ` U )
lclkrs2.t
|- T = ( LSubSp ` D )
lclkrs2.c
|- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
lclkrs2.r
|- R = { g e. F | ( ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) /\ ( ._|_ ` ( L ` g ) ) C_ Q ) }
lclkrs2.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lclkrs2.q
|- ( ph -> Q e. S )
Assertion lclkrs2
|- ( ph -> ( R e. T /\ R C_ C ) )

Proof

Step Hyp Ref Expression
1 lclkrs2.h
 |-  H = ( LHyp ` K )
2 lclkrs2.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 lclkrs2.u
 |-  U = ( ( DVecH ` K ) ` W )
4 lclkrs2.s
 |-  S = ( LSubSp ` U )
5 lclkrs2.f
 |-  F = ( LFnl ` U )
6 lclkrs2.l
 |-  L = ( LKer ` U )
7 lclkrs2.d
 |-  D = ( LDual ` U )
8 lclkrs2.t
 |-  T = ( LSubSp ` D )
9 lclkrs2.c
 |-  C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
10 lclkrs2.r
 |-  R = { g e. F | ( ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) /\ ( ._|_ ` ( L ` g ) ) C_ Q ) }
11 lclkrs2.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
12 lclkrs2.q
 |-  ( ph -> Q e. S )
13 1 2 3 4 5 6 7 8 10 11 12 lclkrs
 |-  ( ph -> R e. T )
14 simpl
 |-  ( ( ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) /\ ( ._|_ ` ( L ` g ) ) C_ Q ) -> ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) )
15 14 a1i
 |-  ( g e. F -> ( ( ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) /\ ( ._|_ ` ( L ` g ) ) C_ Q ) -> ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) ) )
16 15 ss2rabi
 |-  { g e. F | ( ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) /\ ( ._|_ ` ( L ` g ) ) C_ Q ) } C_ { g e. F | ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) }
17 fveq2
 |-  ( f = g -> ( L ` f ) = ( L ` g ) )
18 17 fveq2d
 |-  ( f = g -> ( ._|_ ` ( L ` f ) ) = ( ._|_ ` ( L ` g ) ) )
19 18 fveq2d
 |-  ( f = g -> ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) )
20 19 17 eqeq12d
 |-  ( f = g -> ( ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) <-> ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) ) )
21 20 cbvrabv
 |-  { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { g e. F | ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) }
22 9 21 eqtri
 |-  C = { g e. F | ( ._|_ ` ( ._|_ ` ( L ` g ) ) ) = ( L ` g ) }
23 16 10 22 3sstr4i
 |-  R C_ C
24 13 23 jctir
 |-  ( ph -> ( R e. T /\ R C_ C ) )