| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrs2.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | lclkrs2.o | ⊢  ⊥   =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | lclkrs2.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | lclkrs2.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 5 |  | lclkrs2.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 6 |  | lclkrs2.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 7 |  | lclkrs2.d | ⊢ 𝐷  =  ( LDual ‘ 𝑈 ) | 
						
							| 8 |  | lclkrs2.t | ⊢ 𝑇  =  ( LSubSp ‘ 𝐷 ) | 
						
							| 9 |  | lclkrs2.c | ⊢ 𝐶  =  { 𝑓  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 ) } | 
						
							| 10 |  | lclkrs2.r | ⊢ 𝑅  =  { 𝑔  ∈  𝐹  ∣  ( (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 )  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝑔 ) )  ⊆  𝑄 ) } | 
						
							| 11 |  | lclkrs2.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 |  | lclkrs2.q | ⊢ ( 𝜑  →  𝑄  ∈  𝑆 ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 10 11 12 | lclkrs | ⊢ ( 𝜑  →  𝑅  ∈  𝑇 ) | 
						
							| 14 |  | simpl | ⊢ ( ( (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 )  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝑔 ) )  ⊆  𝑄 )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 ) ) | 
						
							| 15 | 14 | a1i | ⊢ ( 𝑔  ∈  𝐹  →  ( ( (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 )  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝑔 ) )  ⊆  𝑄 )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 ) ) ) | 
						
							| 16 | 15 | ss2rabi | ⊢ { 𝑔  ∈  𝐹  ∣  ( (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 )  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝑔 ) )  ⊆  𝑄 ) }  ⊆  { 𝑔  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 ) } | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑓  =  𝑔  →  ( 𝐿 ‘ 𝑓 )  =  ( 𝐿 ‘ 𝑔 ) ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( 𝑓  =  𝑔  →  (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) )  =  (  ⊥  ‘ ( 𝐿 ‘ 𝑔 ) ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝑓  =  𝑔  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑔 ) ) ) ) | 
						
							| 20 | 19 17 | eqeq12d | ⊢ ( 𝑓  =  𝑔  →  ( (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ↔  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 ) ) ) | 
						
							| 21 | 20 | cbvrabv | ⊢ { 𝑓  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 ) }  =  { 𝑔  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 ) } | 
						
							| 22 | 9 21 | eqtri | ⊢ 𝐶  =  { 𝑔  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 ) } | 
						
							| 23 | 16 10 22 | 3sstr4i | ⊢ 𝑅  ⊆  𝐶 | 
						
							| 24 | 13 23 | jctir | ⊢ ( 𝜑  →  ( 𝑅  ∈  𝑇  ∧  𝑅  ⊆  𝐶 ) ) |