Metamath Proof Explorer


Theorem lclkrs2

Description: The set of functionals with closed kernels and majorizing the orthocomplement of a given subspace Q is a subspace of the dual space containing functionals with closed kernels. Note that R is the value given by mapdval . (Contributed by NM, 12-Mar-2015)

Ref Expression
Hypotheses lclkrs2.h 𝐻 = ( LHyp ‘ 𝐾 )
lclkrs2.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lclkrs2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lclkrs2.s 𝑆 = ( LSubSp ‘ 𝑈 )
lclkrs2.f 𝐹 = ( LFnl ‘ 𝑈 )
lclkrs2.l 𝐿 = ( LKer ‘ 𝑈 )
lclkrs2.d 𝐷 = ( LDual ‘ 𝑈 )
lclkrs2.t 𝑇 = ( LSubSp ‘ 𝐷 )
lclkrs2.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
lclkrs2.r 𝑅 = { 𝑔𝐹 ∣ ( ( ‘ ( ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) ∧ ( ‘ ( 𝐿𝑔 ) ) ⊆ 𝑄 ) }
lclkrs2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lclkrs2.q ( 𝜑𝑄𝑆 )
Assertion lclkrs2 ( 𝜑 → ( 𝑅𝑇𝑅𝐶 ) )

Proof

Step Hyp Ref Expression
1 lclkrs2.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lclkrs2.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lclkrs2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lclkrs2.s 𝑆 = ( LSubSp ‘ 𝑈 )
5 lclkrs2.f 𝐹 = ( LFnl ‘ 𝑈 )
6 lclkrs2.l 𝐿 = ( LKer ‘ 𝑈 )
7 lclkrs2.d 𝐷 = ( LDual ‘ 𝑈 )
8 lclkrs2.t 𝑇 = ( LSubSp ‘ 𝐷 )
9 lclkrs2.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
10 lclkrs2.r 𝑅 = { 𝑔𝐹 ∣ ( ( ‘ ( ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) ∧ ( ‘ ( 𝐿𝑔 ) ) ⊆ 𝑄 ) }
11 lclkrs2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 lclkrs2.q ( 𝜑𝑄𝑆 )
13 1 2 3 4 5 6 7 8 10 11 12 lclkrs ( 𝜑𝑅𝑇 )
14 simpl ( ( ( ‘ ( ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) ∧ ( ‘ ( 𝐿𝑔 ) ) ⊆ 𝑄 ) → ( ‘ ( ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) )
15 14 a1i ( 𝑔𝐹 → ( ( ( ‘ ( ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) ∧ ( ‘ ( 𝐿𝑔 ) ) ⊆ 𝑄 ) → ( ‘ ( ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) ) )
16 15 ss2rabi { 𝑔𝐹 ∣ ( ( ‘ ( ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) ∧ ( ‘ ( 𝐿𝑔 ) ) ⊆ 𝑄 ) } ⊆ { 𝑔𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) }
17 fveq2 ( 𝑓 = 𝑔 → ( 𝐿𝑓 ) = ( 𝐿𝑔 ) )
18 17 fveq2d ( 𝑓 = 𝑔 → ( ‘ ( 𝐿𝑓 ) ) = ( ‘ ( 𝐿𝑔 ) ) )
19 18 fveq2d ( 𝑓 = 𝑔 → ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( ‘ ( ‘ ( 𝐿𝑔 ) ) ) )
20 19 17 eqeq12d ( 𝑓 = 𝑔 → ( ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) ↔ ( ‘ ( ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) ) )
21 20 cbvrabv { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } = { 𝑔𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) }
22 9 21 eqtri 𝐶 = { 𝑔𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) }
23 16 10 22 3sstr4i 𝑅𝐶
24 13 23 jctir ( 𝜑 → ( 𝑅𝑇𝑅𝐶 ) )