Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrs2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lclkrs2.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lclkrs2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lclkrs2.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
5 |
|
lclkrs2.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
6 |
|
lclkrs2.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
7 |
|
lclkrs2.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
8 |
|
lclkrs2.t |
⊢ 𝑇 = ( LSubSp ‘ 𝐷 ) |
9 |
|
lclkrs2.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
10 |
|
lclkrs2.r |
⊢ 𝑅 = { 𝑔 ∈ 𝐹 ∣ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑄 ) } |
11 |
|
lclkrs2.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
lclkrs2.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑆 ) |
13 |
1 2 3 4 5 6 7 8 10 11 12
|
lclkrs |
⊢ ( 𝜑 → 𝑅 ∈ 𝑇 ) |
14 |
|
simpl |
⊢ ( ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑄 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) ) |
15 |
14
|
a1i |
⊢ ( 𝑔 ∈ 𝐹 → ( ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑄 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) ) ) |
16 |
15
|
ss2rabi |
⊢ { 𝑔 ∈ 𝐹 ∣ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑄 ) } ⊆ { 𝑔 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } |
17 |
|
fveq2 |
⊢ ( 𝑓 = 𝑔 → ( 𝐿 ‘ 𝑓 ) = ( 𝐿 ‘ 𝑔 ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝑓 = 𝑔 → ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
19 |
18
|
fveq2d |
⊢ ( 𝑓 = 𝑔 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) ) |
20 |
19 17
|
eqeq12d |
⊢ ( 𝑓 = 𝑔 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) ) ) |
21 |
20
|
cbvrabv |
⊢ { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } = { 𝑔 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } |
22 |
9 21
|
eqtri |
⊢ 𝐶 = { 𝑔 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } |
23 |
16 10 22
|
3sstr4i |
⊢ 𝑅 ⊆ 𝐶 |
24 |
13 23
|
jctir |
⊢ ( 𝜑 → ( 𝑅 ∈ 𝑇 ∧ 𝑅 ⊆ 𝐶 ) ) |