Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrs.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lclkrs.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lclkrs.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lclkrs.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
5 |
|
lclkrs.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
6 |
|
lclkrs.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
7 |
|
lclkrs.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
8 |
|
lclkrs.t |
⊢ 𝑇 = ( LSubSp ‘ 𝐷 ) |
9 |
|
lclkrs.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑅 ) } |
10 |
|
lclkrs.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
lclkrs.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑆 ) |
12 |
|
ssrab2 |
⊢ { 𝑓 ∈ 𝐹 ∣ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑅 ) } ⊆ 𝐹 |
13 |
12
|
a1i |
⊢ ( 𝜑 → { 𝑓 ∈ 𝐹 ∣ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑅 ) } ⊆ 𝐹 ) |
14 |
9
|
a1i |
⊢ ( 𝜑 → 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑅 ) } ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
16 |
1 3 10
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
17 |
5 7 15 16
|
ldualvbase |
⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = 𝐹 ) |
18 |
13 14 17
|
3sstr4d |
⊢ ( 𝜑 → 𝐶 ⊆ ( Base ‘ 𝐷 ) ) |
19 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
20 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
22 |
19 20 21 5
|
lfl0f |
⊢ ( 𝑈 ∈ LMod → ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∈ 𝐹 ) |
23 |
16 22
|
syl |
⊢ ( 𝜑 → ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∈ 𝐹 ) |
24 |
1 3 2 21 10
|
dochoc1 |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( Base ‘ 𝑈 ) ) ) = ( Base ‘ 𝑈 ) ) |
25 |
|
eqidd |
⊢ ( 𝜑 → ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) |
26 |
19 20 21 5 6
|
lkr0f |
⊢ ( ( 𝑈 ∈ LMod ∧ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∈ 𝐹 ) → ( ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) = ( Base ‘ 𝑈 ) ↔ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) |
27 |
16 23 26
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) = ( Base ‘ 𝑈 ) ↔ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) |
28 |
25 27
|
mpbird |
⊢ ( 𝜑 → ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) = ( Base ‘ 𝑈 ) ) |
29 |
28
|
fveq2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) = ( ⊥ ‘ ( Base ‘ 𝑈 ) ) ) |
30 |
29
|
fveq2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( Base ‘ 𝑈 ) ) ) ) |
31 |
24 30 28
|
3eqtr4d |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) ) = ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) |
32 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
33 |
1 3 2 21 32
|
doch1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ⊥ ‘ ( Base ‘ 𝑈 ) ) = { ( 0g ‘ 𝑈 ) } ) |
34 |
10 33
|
syl |
⊢ ( 𝜑 → ( ⊥ ‘ ( Base ‘ 𝑈 ) ) = { ( 0g ‘ 𝑈 ) } ) |
35 |
29 34
|
eqtrd |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) = { ( 0g ‘ 𝑈 ) } ) |
36 |
32 4
|
lss0ss |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑅 ∈ 𝑆 ) → { ( 0g ‘ 𝑈 ) } ⊆ 𝑅 ) |
37 |
16 11 36
|
syl2anc |
⊢ ( 𝜑 → { ( 0g ‘ 𝑈 ) } ⊆ 𝑅 ) |
38 |
35 37
|
eqsstrd |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) ⊆ 𝑅 ) |
39 |
9
|
lcfls1lem |
⊢ ( ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∈ 𝐶 ↔ ( ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) ) = ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ∧ ( ⊥ ‘ ( 𝐿 ‘ ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) ⊆ 𝑅 ) ) |
40 |
23 31 38 39
|
syl3anbrc |
⊢ ( 𝜑 → ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∈ 𝐶 ) |
41 |
40
|
ne0d |
⊢ ( 𝜑 → 𝐶 ≠ ∅ ) |
42 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) |
43 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐷 ) = ( ·𝑠 ‘ 𝐷 ) |
44 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
45 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑅 ∈ 𝑆 ) |
46 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑏 ∈ 𝐶 ) |
47 |
|
eqid |
⊢ ( +g ‘ 𝐷 ) = ( +g ‘ 𝐷 ) |
48 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑎 ∈ 𝐶 ) |
49 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ) |
50 |
|
eqid |
⊢ ( Scalar ‘ 𝐷 ) = ( Scalar ‘ 𝐷 ) |
51 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐷 ) ) = ( Base ‘ ( Scalar ‘ 𝐷 ) ) |
52 |
19 42 7 50 51 16
|
ldualsbase |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐷 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( Base ‘ ( Scalar ‘ 𝐷 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
54 |
49 53
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
55 |
1 2 3 4 5 6 7 19 42 43 9 44 45 48 54
|
lclkrslem1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐷 ) 𝑎 ) ∈ 𝐶 ) |
56 |
1 2 3 4 5 6 7 19 42 43 9 44 45 46 47 55
|
lclkrslem2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝐷 ) 𝑎 ) ( +g ‘ 𝐷 ) 𝑏 ) ∈ 𝐶 ) |
57 |
56
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∀ 𝑎 ∈ 𝐶 ∀ 𝑏 ∈ 𝐶 ( ( 𝑥 ( ·𝑠 ‘ 𝐷 ) 𝑎 ) ( +g ‘ 𝐷 ) 𝑏 ) ∈ 𝐶 ) |
58 |
50 51 15 47 43 8
|
islss |
⊢ ( 𝐶 ∈ 𝑇 ↔ ( 𝐶 ⊆ ( Base ‘ 𝐷 ) ∧ 𝐶 ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∀ 𝑎 ∈ 𝐶 ∀ 𝑏 ∈ 𝐶 ( ( 𝑥 ( ·𝑠 ‘ 𝐷 ) 𝑎 ) ( +g ‘ 𝐷 ) 𝑏 ) ∈ 𝐶 ) ) |
59 |
18 41 57 58
|
syl3anbrc |
⊢ ( 𝜑 → 𝐶 ∈ 𝑇 ) |