Step |
Hyp |
Ref |
Expression |
1 |
|
lcfls1.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑄 ) } |
2 |
|
fveq2 |
⊢ ( 𝑓 = 𝐺 → ( 𝐿 ‘ 𝑓 ) = ( 𝐿 ‘ 𝐺 ) ) |
3 |
2
|
fveq2d |
⊢ ( 𝑓 = 𝐺 → ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) = ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) |
4 |
3
|
fveq2d |
⊢ ( 𝑓 = 𝐺 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) |
5 |
4 2
|
eqeq12d |
⊢ ( 𝑓 = 𝐺 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
6 |
3
|
sseq1d |
⊢ ( 𝑓 = 𝐺 → ( ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑄 ↔ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑄 ) ) |
7 |
5 6
|
anbi12d |
⊢ ( 𝑓 = 𝐺 → ( ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑄 ) ↔ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑄 ) ) ) |
8 |
7 1
|
elrab2 |
⊢ ( 𝐺 ∈ 𝐶 ↔ ( 𝐺 ∈ 𝐹 ∧ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑄 ) ) ) |
9 |
|
3anass |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑄 ) ↔ ( 𝐺 ∈ 𝐹 ∧ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑄 ) ) ) |
10 |
8 9
|
bitr4i |
⊢ ( 𝐺 ∈ 𝐶 ↔ ( 𝐺 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑄 ) ) |