Metamath Proof Explorer


Theorem lcfls1lem

Description: Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015)

Ref Expression
Hypothesis lcfls1.c C=fF|˙˙Lf=Lf˙LfQ
Assertion lcfls1lem GCGF˙˙LG=LG˙LGQ

Proof

Step Hyp Ref Expression
1 lcfls1.c C=fF|˙˙Lf=Lf˙LfQ
2 fveq2 f=GLf=LG
3 2 fveq2d f=G˙Lf=˙LG
4 3 fveq2d f=G˙˙Lf=˙˙LG
5 4 2 eqeq12d f=G˙˙Lf=Lf˙˙LG=LG
6 3 sseq1d f=G˙LfQ˙LGQ
7 5 6 anbi12d f=G˙˙Lf=Lf˙LfQ˙˙LG=LG˙LGQ
8 7 1 elrab2 GCGF˙˙LG=LG˙LGQ
9 3anass GF˙˙LG=LG˙LGQGF˙˙LG=LG˙LGQ
10 8 9 bitr4i GCGF˙˙LG=LG˙LGQ