Metamath Proof Explorer


Theorem lcfls1lem

Description: Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015)

Ref Expression
Hypothesis lcfls1.c C = f F | ˙ ˙ L f = L f ˙ L f Q
Assertion lcfls1lem G C G F ˙ ˙ L G = L G ˙ L G Q

Proof

Step Hyp Ref Expression
1 lcfls1.c C = f F | ˙ ˙ L f = L f ˙ L f Q
2 fveq2 f = G L f = L G
3 2 fveq2d f = G ˙ L f = ˙ L G
4 3 fveq2d f = G ˙ ˙ L f = ˙ ˙ L G
5 4 2 eqeq12d f = G ˙ ˙ L f = L f ˙ ˙ L G = L G
6 3 sseq1d f = G ˙ L f Q ˙ L G Q
7 5 6 anbi12d f = G ˙ ˙ L f = L f ˙ L f Q ˙ ˙ L G = L G ˙ L G Q
8 7 1 elrab2 G C G F ˙ ˙ L G = L G ˙ L G Q
9 3anass G F ˙ ˙ L G = L G ˙ L G Q G F ˙ ˙ L G = L G ˙ L G Q
10 8 9 bitr4i G C G F ˙ ˙ L G = L G ˙ L G Q