Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
lcfls1lem
Next ⟩
lcfls1N
Metamath Proof Explorer
Ascii
Unicode
Theorem
lcfls1lem
Description:
Property of a functional with a closed kernel.
(Contributed by
NM
, 27-Jan-2015)
Ref
Expression
Hypothesis
lcfls1.c
⊢
C
=
f
∈
F
|
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
∧
⊥
˙
⁡
L
⁡
f
⊆
Q
Assertion
lcfls1lem
⊢
G
∈
C
↔
G
∈
F
∧
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
∧
⊥
˙
⁡
L
⁡
G
⊆
Q
Proof
Step
Hyp
Ref
Expression
1
lcfls1.c
⊢
C
=
f
∈
F
|
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
∧
⊥
˙
⁡
L
⁡
f
⊆
Q
2
fveq2
⊢
f
=
G
→
L
⁡
f
=
L
⁡
G
3
2
fveq2d
⊢
f
=
G
→
⊥
˙
⁡
L
⁡
f
=
⊥
˙
⁡
L
⁡
G
4
3
fveq2d
⊢
f
=
G
→
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
5
4
2
eqeq12d
⊢
f
=
G
→
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
↔
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
6
3
sseq1d
⊢
f
=
G
→
⊥
˙
⁡
L
⁡
f
⊆
Q
↔
⊥
˙
⁡
L
⁡
G
⊆
Q
7
5
6
anbi12d
⊢
f
=
G
→
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
∧
⊥
˙
⁡
L
⁡
f
⊆
Q
↔
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
∧
⊥
˙
⁡
L
⁡
G
⊆
Q
8
7
1
elrab2
⊢
G
∈
C
↔
G
∈
F
∧
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
∧
⊥
˙
⁡
L
⁡
G
⊆
Q
9
3anass
⊢
G
∈
F
∧
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
∧
⊥
˙
⁡
L
⁡
G
⊆
Q
↔
G
∈
F
∧
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
∧
⊥
˙
⁡
L
⁡
G
⊆
Q
10
8
9
bitr4i
⊢
G
∈
C
↔
G
∈
F
∧
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
∧
⊥
˙
⁡
L
⁡
G
⊆
Q