Metamath Proof Explorer


Theorem lcfls1N

Description: Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lcfls1.c C=fF|˙˙Lf=Lf˙LfQ
lcfls1.g φGF
Assertion lcfls1N φGC˙˙LG=LG˙LGQ

Proof

Step Hyp Ref Expression
1 lcfls1.c C=fF|˙˙Lf=Lf˙LfQ
2 lcfls1.g φGF
3 1 lcfls1lem GCGF˙˙LG=LG˙LGQ
4 3anass GF˙˙LG=LG˙LGQGF˙˙LG=LG˙LGQ
5 3 4 bitri GCGF˙˙LG=LG˙LGQ
6 2 biantrurd φ˙˙LG=LG˙LGQGF˙˙LG=LG˙LGQ
7 5 6 bitr4id φGC˙˙LG=LG˙LGQ