Metamath Proof Explorer


Theorem lcfls1c

Description: Property of a functional with a closed kernel. (Contributed by NM, 28-Jan-2015)

Ref Expression
Hypotheses lcfls1.c C=fF|˙˙Lf=Lf˙LfQ
lcfls1c.c D=fF|˙˙Lf=Lf
Assertion lcfls1c GCGD˙LGQ

Proof

Step Hyp Ref Expression
1 lcfls1.c C=fF|˙˙Lf=Lf˙LfQ
2 lcfls1c.c D=fF|˙˙Lf=Lf
3 df-3an GF˙˙LG=LG˙LGQGF˙˙LG=LG˙LGQ
4 1 lcfls1lem GCGF˙˙LG=LG˙LGQ
5 2 lcfl1lem GDGF˙˙LG=LG
6 5 anbi1i GD˙LGQGF˙˙LG=LG˙LGQ
7 3 4 6 3bitr4i GCGD˙LGQ