Step |
Hyp |
Ref |
Expression |
1 |
|
lcfls1.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑄 ) } |
2 |
|
lcfls1c.c |
⊢ 𝐷 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
3 |
|
df-3an |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑄 ) ↔ ( ( 𝐺 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑄 ) ) |
4 |
1
|
lcfls1lem |
⊢ ( 𝐺 ∈ 𝐶 ↔ ( 𝐺 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑄 ) ) |
5 |
2
|
lcfl1lem |
⊢ ( 𝐺 ∈ 𝐷 ↔ ( 𝐺 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ) |
6 |
5
|
anbi1i |
⊢ ( ( 𝐺 ∈ 𝐷 ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑄 ) ↔ ( ( 𝐺 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑄 ) ) |
7 |
3 4 6
|
3bitr4i |
⊢ ( 𝐺 ∈ 𝐶 ↔ ( 𝐺 ∈ 𝐷 ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑄 ) ) |