| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrslem1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | lclkrslem1.o | ⊢  ⊥   =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | lclkrslem1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | lclkrslem1.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 5 |  | lclkrslem1.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 6 |  | lclkrslem1.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 7 |  | lclkrslem1.d | ⊢ 𝐷  =  ( LDual ‘ 𝑈 ) | 
						
							| 8 |  | lclkrslem1.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 9 |  | lclkrslem1.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 10 |  | lclkrslem1.t | ⊢  ·   =  (  ·𝑠  ‘ 𝐷 ) | 
						
							| 11 |  | lclkrslem1.c | ⊢ 𝐶  =  { 𝑓  ∈  𝐹  ∣  ( (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑄 ) } | 
						
							| 12 |  | lclkrslem1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 13 |  | lclkrslem1.q | ⊢ ( 𝜑  →  𝑄  ∈  𝑆 ) | 
						
							| 14 |  | lclkrslem1.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐶 ) | 
						
							| 15 |  | lclkrslem1.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 16 |  | eqid | ⊢ { 𝑓  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 ) }  =  { 𝑓  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 ) } | 
						
							| 17 | 11 16 | lcfls1c | ⊢ ( 𝐺  ∈  𝐶  ↔  ( 𝐺  ∈  { 𝑓  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 ) }  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  ⊆  𝑄 ) ) | 
						
							| 18 | 17 | simplbi | ⊢ ( 𝐺  ∈  𝐶  →  𝐺  ∈  { 𝑓  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 ) } ) | 
						
							| 19 | 14 18 | syl | ⊢ ( 𝜑  →  𝐺  ∈  { 𝑓  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 ) } ) | 
						
							| 20 | 1 2 3 5 6 7 8 9 10 16 12 15 19 | lclkrlem1 | ⊢ ( 𝜑  →  ( 𝑋  ·  𝐺 )  ∈  { 𝑓  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 ) } ) | 
						
							| 21 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 22 | 1 3 12 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 23 | 11 | lcfls1lem | ⊢ ( 𝐺  ∈  𝐶  ↔  ( 𝐺  ∈  𝐹  ∧  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  =  ( 𝐿 ‘ 𝐺 )  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  ⊆  𝑄 ) ) | 
						
							| 24 | 14 23 | sylib | ⊢ ( 𝜑  →  ( 𝐺  ∈  𝐹  ∧  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  =  ( 𝐿 ‘ 𝐺 )  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  ⊆  𝑄 ) ) | 
						
							| 25 | 24 | simp1d | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 26 | 5 8 9 7 10 22 15 25 | ldualvscl | ⊢ ( 𝜑  →  ( 𝑋  ·  𝐺 )  ∈  𝐹 ) | 
						
							| 27 | 21 5 6 22 26 | lkrssv | ⊢ ( 𝜑  →  ( 𝐿 ‘ ( 𝑋  ·  𝐺 ) )  ⊆  ( Base ‘ 𝑈 ) ) | 
						
							| 28 | 1 3 12 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 29 | 8 9 5 6 7 10 28 25 15 | lkrss | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐺 )  ⊆  ( 𝐿 ‘ ( 𝑋  ·  𝐺 ) ) ) | 
						
							| 30 | 1 3 21 2 | dochss | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐿 ‘ ( 𝑋  ·  𝐺 ) )  ⊆  ( Base ‘ 𝑈 )  ∧  ( 𝐿 ‘ 𝐺 )  ⊆  ( 𝐿 ‘ ( 𝑋  ·  𝐺 ) ) )  →  (  ⊥  ‘ ( 𝐿 ‘ ( 𝑋  ·  𝐺 ) ) )  ⊆  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) ) | 
						
							| 31 | 12 27 29 30 | syl3anc | ⊢ ( 𝜑  →  (  ⊥  ‘ ( 𝐿 ‘ ( 𝑋  ·  𝐺 ) ) )  ⊆  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) ) | 
						
							| 32 | 24 | simp3d | ⊢ ( 𝜑  →  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  ⊆  𝑄 ) | 
						
							| 33 | 31 32 | sstrd | ⊢ ( 𝜑  →  (  ⊥  ‘ ( 𝐿 ‘ ( 𝑋  ·  𝐺 ) ) )  ⊆  𝑄 ) | 
						
							| 34 | 11 16 | lcfls1c | ⊢ ( ( 𝑋  ·  𝐺 )  ∈  𝐶  ↔  ( ( 𝑋  ·  𝐺 )  ∈  { 𝑓  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 ) }  ∧  (  ⊥  ‘ ( 𝐿 ‘ ( 𝑋  ·  𝐺 ) ) )  ⊆  𝑄 ) ) | 
						
							| 35 | 20 33 34 | sylanbrc | ⊢ ( 𝜑  →  ( 𝑋  ·  𝐺 )  ∈  𝐶 ) |