| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lclkrslem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lclkrslem1.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lclkrslem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
lclkrslem1.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
| 5 |
|
lclkrslem1.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 6 |
|
lclkrslem1.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 7 |
|
lclkrslem1.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
| 8 |
|
lclkrslem1.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
| 9 |
|
lclkrslem1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 10 |
|
lclkrslem1.t |
⊢ · = ( ·𝑠 ‘ 𝐷 ) |
| 11 |
|
lclkrslem1.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑄 ) } |
| 12 |
|
lclkrslem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 13 |
|
lclkrslem1.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑆 ) |
| 14 |
|
lclkrslem1.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐶 ) |
| 15 |
|
lclkrslem2.p |
⊢ + = ( +g ‘ 𝐷 ) |
| 16 |
|
lclkrslem2.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐶 ) |
| 17 |
|
eqid |
⊢ { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
| 18 |
11 17
|
lcfls1c |
⊢ ( 𝐸 ∈ 𝐶 ↔ ( 𝐸 ∈ { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ⊆ 𝑄 ) ) |
| 19 |
18
|
simplbi |
⊢ ( 𝐸 ∈ 𝐶 → 𝐸 ∈ { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ) |
| 20 |
16 19
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ) |
| 21 |
11 17
|
lcfls1c |
⊢ ( 𝐺 ∈ 𝐶 ↔ ( 𝐺 ∈ { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑄 ) ) |
| 22 |
21
|
simplbi |
⊢ ( 𝐺 ∈ 𝐶 → 𝐺 ∈ { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ) |
| 23 |
14 22
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ) |
| 24 |
1 2 3 5 6 7 15 17 12 20 23
|
lclkrlem2 |
⊢ ( 𝜑 → ( 𝐸 + 𝐺 ) ∈ { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ) |
| 25 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 26 |
1 3 12
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 27 |
11
|
lcfls1lem |
⊢ ( 𝐸 ∈ 𝐶 ↔ ( 𝐸 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ) = ( 𝐿 ‘ 𝐸 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ⊆ 𝑄 ) ) |
| 28 |
16 27
|
sylib |
⊢ ( 𝜑 → ( 𝐸 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ) = ( 𝐿 ‘ 𝐸 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ⊆ 𝑄 ) ) |
| 29 |
28
|
simp1d |
⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) |
| 30 |
11
|
lcfls1lem |
⊢ ( 𝐺 ∈ 𝐶 ↔ ( 𝐺 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑄 ) ) |
| 31 |
14 30
|
sylib |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑄 ) ) |
| 32 |
31
|
simp1d |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 33 |
5 7 15 26 29 32
|
ldualvaddcl |
⊢ ( 𝜑 → ( 𝐸 + 𝐺 ) ∈ 𝐹 ) |
| 34 |
25 5 6 26 33
|
lkrssv |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ⊆ ( Base ‘ 𝑈 ) ) |
| 35 |
5 6 7 15 26 29 32
|
lkrin |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 36 |
1 3 25 2
|
dochss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ⊆ ( Base ‘ 𝑈 ) ∧ ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) → ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ⊆ ( ⊥ ‘ ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ) ) |
| 37 |
12 34 35 36
|
syl3anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ⊆ ( ⊥ ‘ ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ) ) |
| 38 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 39 |
|
eqid |
⊢ ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) |
| 40 |
28
|
simp2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ) = ( 𝐿 ‘ 𝐸 ) ) |
| 41 |
1 38 2 3 5 6 12 29
|
lcfl5a |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ) = ( 𝐿 ‘ 𝐸 ) ↔ ( 𝐿 ‘ 𝐸 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 42 |
40 41
|
mpbid |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 43 |
31
|
simp2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ) |
| 44 |
1 38 2 3 5 6 12 32
|
lcfl5a |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( 𝐿 ‘ 𝐺 ) ↔ ( 𝐿 ‘ 𝐺 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 45 |
43 44
|
mpbid |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 46 |
1 38 3 25 2 39 12 42 45
|
dochdmm1 |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ) = ( ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) |
| 47 |
|
eqid |
⊢ ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 ) |
| 48 |
25 5 6 26 29
|
lkrssv |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) ⊆ ( Base ‘ 𝑈 ) ) |
| 49 |
1 38 3 25 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐿 ‘ 𝐸 ) ⊆ ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 50 |
12 48 49
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 51 |
1 38 2 3 47 5 6 12 50 32
|
dochkrsm |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ( LSSum ‘ 𝑈 ) ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 52 |
1 3 25 4 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐿 ‘ 𝐸 ) ⊆ ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ∈ 𝑆 ) |
| 53 |
12 48 52
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ∈ 𝑆 ) |
| 54 |
25 5 6 26 32
|
lkrssv |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ⊆ ( Base ‘ 𝑈 ) ) |
| 55 |
1 3 25 4 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ 𝑆 ) |
| 56 |
12 54 55
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ 𝑆 ) |
| 57 |
1 3 25 4 47 38 39 12 53 56
|
djhlsmcl |
⊢ ( 𝜑 → ( ( ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ( LSSum ‘ 𝑈 ) ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ↔ ( ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ( LSSum ‘ 𝑈 ) ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) ) |
| 58 |
51 57
|
mpbid |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ( LSSum ‘ 𝑈 ) ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) = ( ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) |
| 59 |
46 58
|
eqtr4d |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ) = ( ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ( LSSum ‘ 𝑈 ) ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) |
| 60 |
28
|
simp3d |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ⊆ 𝑄 ) |
| 61 |
31
|
simp3d |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑄 ) |
| 62 |
4
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑈 ) ) |
| 63 |
26 62
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑈 ) ) |
| 64 |
63 53
|
sseldd |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 65 |
63 56
|
sseldd |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 66 |
63 13
|
sseldd |
⊢ ( 𝜑 → 𝑄 ∈ ( SubGrp ‘ 𝑈 ) ) |
| 67 |
47
|
lsmlub |
⊢ ( ( ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( SubGrp ‘ 𝑈 ) ∧ 𝑄 ∈ ( SubGrp ‘ 𝑈 ) ) → ( ( ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ⊆ 𝑄 ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑄 ) ↔ ( ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ( LSSum ‘ 𝑈 ) ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ⊆ 𝑄 ) ) |
| 68 |
64 65 66 67
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ⊆ 𝑄 ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ⊆ 𝑄 ) ↔ ( ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ( LSSum ‘ 𝑈 ) ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ⊆ 𝑄 ) ) |
| 69 |
60 61 68
|
mpbi2and |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝐿 ‘ 𝐸 ) ) ( LSSum ‘ 𝑈 ) ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ⊆ 𝑄 ) |
| 70 |
59 69
|
eqsstrd |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ) ⊆ 𝑄 ) |
| 71 |
37 70
|
sstrd |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ⊆ 𝑄 ) |
| 72 |
11 17
|
lcfls1c |
⊢ ( ( 𝐸 + 𝐺 ) ∈ 𝐶 ↔ ( ( 𝐸 + 𝐺 ) ∈ { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ∧ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ⊆ 𝑄 ) ) |
| 73 |
24 71 72
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐸 + 𝐺 ) ∈ 𝐶 ) |