| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lclkrslem1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | lclkrslem1.o | ⊢  ⊥   =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | lclkrslem1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | lclkrslem1.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 5 |  | lclkrslem1.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 6 |  | lclkrslem1.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 7 |  | lclkrslem1.d | ⊢ 𝐷  =  ( LDual ‘ 𝑈 ) | 
						
							| 8 |  | lclkrslem1.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 9 |  | lclkrslem1.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 10 |  | lclkrslem1.t | ⊢  ·   =  (  ·𝑠  ‘ 𝐷 ) | 
						
							| 11 |  | lclkrslem1.c | ⊢ 𝐶  =  { 𝑓  ∈  𝐹  ∣  ( (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 )  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑄 ) } | 
						
							| 12 |  | lclkrslem1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 13 |  | lclkrslem1.q | ⊢ ( 𝜑  →  𝑄  ∈  𝑆 ) | 
						
							| 14 |  | lclkrslem1.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐶 ) | 
						
							| 15 |  | lclkrslem2.p | ⊢  +   =  ( +g ‘ 𝐷 ) | 
						
							| 16 |  | lclkrslem2.e | ⊢ ( 𝜑  →  𝐸  ∈  𝐶 ) | 
						
							| 17 |  | eqid | ⊢ { 𝑓  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 ) }  =  { 𝑓  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 ) } | 
						
							| 18 | 11 17 | lcfls1c | ⊢ ( 𝐸  ∈  𝐶  ↔  ( 𝐸  ∈  { 𝑓  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 ) }  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) )  ⊆  𝑄 ) ) | 
						
							| 19 | 18 | simplbi | ⊢ ( 𝐸  ∈  𝐶  →  𝐸  ∈  { 𝑓  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 ) } ) | 
						
							| 20 | 16 19 | syl | ⊢ ( 𝜑  →  𝐸  ∈  { 𝑓  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 ) } ) | 
						
							| 21 | 11 17 | lcfls1c | ⊢ ( 𝐺  ∈  𝐶  ↔  ( 𝐺  ∈  { 𝑓  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 ) }  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  ⊆  𝑄 ) ) | 
						
							| 22 | 21 | simplbi | ⊢ ( 𝐺  ∈  𝐶  →  𝐺  ∈  { 𝑓  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 ) } ) | 
						
							| 23 | 14 22 | syl | ⊢ ( 𝜑  →  𝐺  ∈  { 𝑓  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 ) } ) | 
						
							| 24 | 1 2 3 5 6 7 15 17 12 20 23 | lclkrlem2 | ⊢ ( 𝜑  →  ( 𝐸  +  𝐺 )  ∈  { 𝑓  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 ) } ) | 
						
							| 25 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 26 | 1 3 12 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 27 | 11 | lcfls1lem | ⊢ ( 𝐸  ∈  𝐶  ↔  ( 𝐸  ∈  𝐹  ∧  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) ) )  =  ( 𝐿 ‘ 𝐸 )  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) )  ⊆  𝑄 ) ) | 
						
							| 28 | 16 27 | sylib | ⊢ ( 𝜑  →  ( 𝐸  ∈  𝐹  ∧  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) ) )  =  ( 𝐿 ‘ 𝐸 )  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) )  ⊆  𝑄 ) ) | 
						
							| 29 | 28 | simp1d | ⊢ ( 𝜑  →  𝐸  ∈  𝐹 ) | 
						
							| 30 | 11 | lcfls1lem | ⊢ ( 𝐺  ∈  𝐶  ↔  ( 𝐺  ∈  𝐹  ∧  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  =  ( 𝐿 ‘ 𝐺 )  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  ⊆  𝑄 ) ) | 
						
							| 31 | 14 30 | sylib | ⊢ ( 𝜑  →  ( 𝐺  ∈  𝐹  ∧  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  =  ( 𝐿 ‘ 𝐺 )  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  ⊆  𝑄 ) ) | 
						
							| 32 | 31 | simp1d | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 33 | 5 7 15 26 29 32 | ldualvaddcl | ⊢ ( 𝜑  →  ( 𝐸  +  𝐺 )  ∈  𝐹 ) | 
						
							| 34 | 25 5 6 26 33 | lkrssv | ⊢ ( 𝜑  →  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  ⊆  ( Base ‘ 𝑈 ) ) | 
						
							| 35 | 5 6 7 15 26 29 32 | lkrin | ⊢ ( 𝜑  →  ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) )  ⊆  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) ) | 
						
							| 36 | 1 3 25 2 | dochss | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) )  ⊆  ( Base ‘ 𝑈 )  ∧  ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) )  ⊆  ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) )  →  (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) )  ⊆  (  ⊥  ‘ ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) ) ) ) | 
						
							| 37 | 12 34 35 36 | syl3anc | ⊢ ( 𝜑  →  (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) )  ⊆  (  ⊥  ‘ ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) ) ) ) | 
						
							| 38 |  | eqid | ⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 39 |  | eqid | ⊢ ( ( joinH ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 40 | 28 | simp2d | ⊢ ( 𝜑  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) ) )  =  ( 𝐿 ‘ 𝐸 ) ) | 
						
							| 41 | 1 38 2 3 5 6 12 29 | lcfl5a | ⊢ ( 𝜑  →  ( (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) ) )  =  ( 𝐿 ‘ 𝐸 )  ↔  ( 𝐿 ‘ 𝐸 )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 42 | 40 41 | mpbid | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐸 )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 43 | 31 | simp2d | ⊢ ( 𝜑  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  =  ( 𝐿 ‘ 𝐺 ) ) | 
						
							| 44 | 1 38 2 3 5 6 12 32 | lcfl5a | ⊢ ( 𝜑  →  ( (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  =  ( 𝐿 ‘ 𝐺 )  ↔  ( 𝐿 ‘ 𝐺 )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 45 | 43 44 | mpbid | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐺 )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 46 | 1 38 3 25 2 39 12 42 45 | dochdmm1 | ⊢ ( 𝜑  →  (  ⊥  ‘ ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) ) )  =  ( (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) | 
						
							| 47 |  | eqid | ⊢ ( LSSum ‘ 𝑈 )  =  ( LSSum ‘ 𝑈 ) | 
						
							| 48 | 25 5 6 26 29 | lkrssv | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐸 )  ⊆  ( Base ‘ 𝑈 ) ) | 
						
							| 49 | 1 38 3 25 2 | dochcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐿 ‘ 𝐸 )  ⊆  ( Base ‘ 𝑈 ) )  →  (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 50 | 12 48 49 | syl2anc | ⊢ ( 𝜑  →  (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 51 | 1 38 2 3 47 5 6 12 50 32 | dochkrsm | ⊢ ( 𝜑  →  ( (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) ) ( LSSum ‘ 𝑈 ) (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 52 | 1 3 25 4 2 | dochlss | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐿 ‘ 𝐸 )  ⊆  ( Base ‘ 𝑈 ) )  →  (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) )  ∈  𝑆 ) | 
						
							| 53 | 12 48 52 | syl2anc | ⊢ ( 𝜑  →  (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) )  ∈  𝑆 ) | 
						
							| 54 | 25 5 6 26 32 | lkrssv | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐺 )  ⊆  ( Base ‘ 𝑈 ) ) | 
						
							| 55 | 1 3 25 4 2 | dochlss | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐿 ‘ 𝐺 )  ⊆  ( Base ‘ 𝑈 ) )  →  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  ∈  𝑆 ) | 
						
							| 56 | 12 54 55 | syl2anc | ⊢ ( 𝜑  →  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  ∈  𝑆 ) | 
						
							| 57 | 1 3 25 4 47 38 39 12 53 56 | djhlsmcl | ⊢ ( 𝜑  →  ( ( (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) ) ( LSSum ‘ 𝑈 ) (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )  ↔  ( (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) ) ( LSSum ‘ 𝑈 ) (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  =  ( (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) ) | 
						
							| 58 | 51 57 | mpbid | ⊢ ( 𝜑  →  ( (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) ) ( LSSum ‘ 𝑈 ) (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  =  ( (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) | 
						
							| 59 | 46 58 | eqtr4d | ⊢ ( 𝜑  →  (  ⊥  ‘ ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) ) )  =  ( (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) ) ( LSSum ‘ 𝑈 ) (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) | 
						
							| 60 | 28 | simp3d | ⊢ ( 𝜑  →  (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) )  ⊆  𝑄 ) | 
						
							| 61 | 31 | simp3d | ⊢ ( 𝜑  →  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  ⊆  𝑄 ) | 
						
							| 62 | 4 | lsssssubg | ⊢ ( 𝑈  ∈  LMod  →  𝑆  ⊆  ( SubGrp ‘ 𝑈 ) ) | 
						
							| 63 | 26 62 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  ( SubGrp ‘ 𝑈 ) ) | 
						
							| 64 | 63 53 | sseldd | ⊢ ( 𝜑  →  (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) )  ∈  ( SubGrp ‘ 𝑈 ) ) | 
						
							| 65 | 63 56 | sseldd | ⊢ ( 𝜑  →  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  ∈  ( SubGrp ‘ 𝑈 ) ) | 
						
							| 66 | 63 13 | sseldd | ⊢ ( 𝜑  →  𝑄  ∈  ( SubGrp ‘ 𝑈 ) ) | 
						
							| 67 | 47 | lsmlub | ⊢ ( ( (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) )  ∈  ( SubGrp ‘ 𝑈 )  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  ∈  ( SubGrp ‘ 𝑈 )  ∧  𝑄  ∈  ( SubGrp ‘ 𝑈 ) )  →  ( ( (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) )  ⊆  𝑄  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  ⊆  𝑄 )  ↔  ( (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) ) ( LSSum ‘ 𝑈 ) (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  ⊆  𝑄 ) ) | 
						
							| 68 | 64 65 66 67 | syl3anc | ⊢ ( 𝜑  →  ( ( (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) )  ⊆  𝑄  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  ⊆  𝑄 )  ↔  ( (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) ) ( LSSum ‘ 𝑈 ) (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  ⊆  𝑄 ) ) | 
						
							| 69 | 60 61 68 | mpbi2and | ⊢ ( 𝜑  →  ( (  ⊥  ‘ ( 𝐿 ‘ 𝐸 ) ) ( LSSum ‘ 𝑈 ) (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  ⊆  𝑄 ) | 
						
							| 70 | 59 69 | eqsstrd | ⊢ ( 𝜑  →  (  ⊥  ‘ ( ( 𝐿 ‘ 𝐸 )  ∩  ( 𝐿 ‘ 𝐺 ) ) )  ⊆  𝑄 ) | 
						
							| 71 | 37 70 | sstrd | ⊢ ( 𝜑  →  (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) )  ⊆  𝑄 ) | 
						
							| 72 | 11 17 | lcfls1c | ⊢ ( ( 𝐸  +  𝐺 )  ∈  𝐶  ↔  ( ( 𝐸  +  𝐺 )  ∈  { 𝑓  ∈  𝐹  ∣  (  ⊥  ‘ (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) )  =  ( 𝐿 ‘ 𝑓 ) }  ∧  (  ⊥  ‘ ( 𝐿 ‘ ( 𝐸  +  𝐺 ) ) )  ⊆  𝑄 ) ) | 
						
							| 73 | 24 71 72 | sylanbrc | ⊢ ( 𝜑  →  ( 𝐸  +  𝐺 )  ∈  𝐶 ) |