Metamath Proof Explorer


Theorem lcfl5a

Description: Property of a functional with a closed kernel. TODO: Make lcfl5 etc. obsolete and rewrite without C hypothesis? (Contributed by NM, 29-Jan-2015)

Ref Expression
Hypotheses lcfl5a.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfl5a.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
lcfl5a.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfl5a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfl5a.f 𝐹 = ( LFnl ‘ 𝑈 )
lcfl5a.l 𝐿 = ( LKer ‘ 𝑈 )
lcfl5a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfl5a.g ( 𝜑𝐺𝐹 )
Assertion lcfl5a ( 𝜑 → ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ↔ ( 𝐿𝐺 ) ∈ ran 𝐼 ) )

Proof

Step Hyp Ref Expression
1 lcfl5a.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfl5a.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfl5a.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfl5a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 lcfl5a.f 𝐹 = ( LFnl ‘ 𝑈 )
6 lcfl5a.l 𝐿 = ( LKer ‘ 𝑈 )
7 lcfl5a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 lcfl5a.g ( 𝜑𝐺𝐹 )
9 eqid { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
10 9 8 lcfl1 ( 𝜑 → ( 𝐺 ∈ { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } ↔ ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ) )
11 1 2 3 4 5 6 9 7 8 lcfl5 ( 𝜑 → ( 𝐺 ∈ { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } ↔ ( 𝐿𝐺 ) ∈ ran 𝐼 ) )
12 10 11 bitr3d ( 𝜑 → ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ↔ ( 𝐿𝐺 ) ∈ ran 𝐼 ) )