Metamath Proof Explorer


Theorem lcfl5a

Description: Property of a functional with a closed kernel. TODO: Make lcfl5 etc. obsolete and rewrite without C hypothesis? (Contributed by NM, 29-Jan-2015)

Ref Expression
Hypotheses lcfl5a.h
|- H = ( LHyp ` K )
lcfl5a.i
|- I = ( ( DIsoH ` K ) ` W )
lcfl5a.o
|- ._|_ = ( ( ocH ` K ) ` W )
lcfl5a.u
|- U = ( ( DVecH ` K ) ` W )
lcfl5a.f
|- F = ( LFnl ` U )
lcfl5a.l
|- L = ( LKer ` U )
lcfl5a.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcfl5a.g
|- ( ph -> G e. F )
Assertion lcfl5a
|- ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) <-> ( L ` G ) e. ran I ) )

Proof

Step Hyp Ref Expression
1 lcfl5a.h
 |-  H = ( LHyp ` K )
2 lcfl5a.i
 |-  I = ( ( DIsoH ` K ) ` W )
3 lcfl5a.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
4 lcfl5a.u
 |-  U = ( ( DVecH ` K ) ` W )
5 lcfl5a.f
 |-  F = ( LFnl ` U )
6 lcfl5a.l
 |-  L = ( LKer ` U )
7 lcfl5a.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
8 lcfl5a.g
 |-  ( ph -> G e. F )
9 eqid
 |-  { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
10 9 8 lcfl1
 |-  ( ph -> ( G e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) )
11 1 2 3 4 5 6 9 7 8 lcfl5
 |-  ( ph -> ( G e. { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } <-> ( L ` G ) e. ran I ) )
12 10 11 bitr3d
 |-  ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) <-> ( L ` G ) e. ran I ) )