Metamath Proof Explorer


Theorem lcfl1

Description: Property of a functional with a closed kernel. (Contributed by NM, 31-Dec-2014)

Ref Expression
Hypotheses lcfl1.c
|- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
lcfl1.g
|- ( ph -> G e. F )
Assertion lcfl1
|- ( ph -> ( G e. C <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) )

Proof

Step Hyp Ref Expression
1 lcfl1.c
 |-  C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
2 lcfl1.g
 |-  ( ph -> G e. F )
3 1 lcfl1lem
 |-  ( G e. C <-> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) )
4 2 biantrurd
 |-  ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) <-> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) ) )
5 3 4 bitr4id
 |-  ( ph -> ( G e. C <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) )