Description: Property of a functional with a closed kernel. (Contributed by NM, 31-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcfl1.c | |- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
|
lcfl1.g | |- ( ph -> G e. F ) |
||
Assertion | lcfl1 | |- ( ph -> ( G e. C <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfl1.c | |- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
|
2 | lcfl1.g | |- ( ph -> G e. F ) |
|
3 | 1 | lcfl1lem | |- ( G e. C <-> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) ) |
4 | 2 | biantrurd | |- ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) <-> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) ) ) |
5 | 3 4 | bitr4id | |- ( ph -> ( G e. C <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) ) |