Metamath Proof Explorer


Theorem lcfl1lem

Description: Property of a functional with a closed kernel. (Contributed by NM, 28-Dec-2014)

Ref Expression
Hypothesis lcfl1.c
|- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
Assertion lcfl1lem
|- ( G e. C <-> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) )

Proof

Step Hyp Ref Expression
1 lcfl1.c
 |-  C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
2 fveq2
 |-  ( f = G -> ( L ` f ) = ( L ` G ) )
3 2 fveq2d
 |-  ( f = G -> ( ._|_ ` ( L ` f ) ) = ( ._|_ ` ( L ` G ) ) )
4 3 fveq2d
 |-  ( f = G -> ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) )
5 4 2 eqeq12d
 |-  ( f = G -> ( ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) )
6 5 1 elrab2
 |-  ( G e. C <-> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) )