Metamath Proof Explorer


Theorem lcfl1lem

Description: Property of a functional with a closed kernel. (Contributed by NM, 28-Dec-2014)

Ref Expression
Hypothesis lcfl1.c C=fF|˙˙Lf=Lf
Assertion lcfl1lem GCGF˙˙LG=LG

Proof

Step Hyp Ref Expression
1 lcfl1.c C=fF|˙˙Lf=Lf
2 fveq2 f=GLf=LG
3 2 fveq2d f=G˙Lf=˙LG
4 3 fveq2d f=G˙˙Lf=˙˙LG
5 4 2 eqeq12d f=G˙˙Lf=Lf˙˙LG=LG
6 5 1 elrab2 GCGF˙˙LG=LG