Metamath Proof Explorer


Theorem lcfl1

Description: Property of a functional with a closed kernel. (Contributed by NM, 31-Dec-2014)

Ref Expression
Hypotheses lcfl1.c C = f F | ˙ ˙ L f = L f
lcfl1.g φ G F
Assertion lcfl1 φ G C ˙ ˙ L G = L G

Proof

Step Hyp Ref Expression
1 lcfl1.c C = f F | ˙ ˙ L f = L f
2 lcfl1.g φ G F
3 1 lcfl1lem G C G F ˙ ˙ L G = L G
4 2 biantrurd φ ˙ ˙ L G = L G G F ˙ ˙ L G = L G
5 3 4 bitr4id φ G C ˙ ˙ L G = L G