Metamath Proof Explorer


Theorem lcfl1

Description: Property of a functional with a closed kernel. (Contributed by NM, 31-Dec-2014)

Ref Expression
Hypotheses lcfl1.c C=fF|˙˙Lf=Lf
lcfl1.g φGF
Assertion lcfl1 φGC˙˙LG=LG

Proof

Step Hyp Ref Expression
1 lcfl1.c C=fF|˙˙Lf=Lf
2 lcfl1.g φGF
3 1 lcfl1lem GCGF˙˙LG=LG
4 2 biantrurd φ˙˙LG=LGGF˙˙LG=LG
5 3 4 bitr4id φGC˙˙LG=LG