Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
lcfl1
Next ⟩
lcfl2
Metamath Proof Explorer
Ascii
Unicode
Theorem
lcfl1
Description:
Property of a functional with a closed kernel.
(Contributed by
NM
, 31-Dec-2014)
Ref
Expression
Hypotheses
lcfl1.c
⊢
C
=
f
∈
F
|
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
lcfl1.g
⊢
φ
→
G
∈
F
Assertion
lcfl1
⊢
φ
→
G
∈
C
↔
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
Proof
Step
Hyp
Ref
Expression
1
lcfl1.c
⊢
C
=
f
∈
F
|
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
2
lcfl1.g
⊢
φ
→
G
∈
F
3
1
lcfl1lem
⊢
G
∈
C
↔
G
∈
F
∧
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
4
2
biantrurd
⊢
φ
→
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
↔
G
∈
F
∧
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
5
3
4
bitr4id
⊢
φ
→
G
∈
C
↔
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G