Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
lcfl2
Next ⟩
lcfl3
Metamath Proof Explorer
Ascii
Unicode
Theorem
lcfl2
Description:
Property of a functional with a closed kernel.
(Contributed by
NM
, 1-Jan-2015)
Ref
Expression
Hypotheses
lcfl2.h
⊢
H
=
LHyp
⁡
K
lcfl2.o
⊢
⊥
˙
=
ocH
⁡
K
⁡
W
lcfl2.u
⊢
U
=
DVecH
⁡
K
⁡
W
lcfl2.v
⊢
V
=
Base
U
lcfl2.f
⊢
F
=
LFnl
⁡
U
lcfl2.l
⊢
L
=
LKer
⁡
U
lcfl2.c
⊢
C
=
f
∈
F
|
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
lcfl2.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
lcfl2.g
⊢
φ
→
G
∈
F
Assertion
lcfl2
⊢
φ
→
G
∈
C
↔
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
≠
V
∨
L
⁡
G
=
V
Proof
Step
Hyp
Ref
Expression
1
lcfl2.h
⊢
H
=
LHyp
⁡
K
2
lcfl2.o
⊢
⊥
˙
=
ocH
⁡
K
⁡
W
3
lcfl2.u
⊢
U
=
DVecH
⁡
K
⁡
W
4
lcfl2.v
⊢
V
=
Base
U
5
lcfl2.f
⊢
F
=
LFnl
⁡
U
6
lcfl2.l
⊢
L
=
LKer
⁡
U
7
lcfl2.c
⊢
C
=
f
∈
F
|
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
8
lcfl2.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
9
lcfl2.g
⊢
φ
→
G
∈
F
10
7
9
lcfl1
⊢
φ
→
G
∈
C
↔
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
11
1
2
3
4
5
6
8
9
dochkrshp4
⊢
φ
→
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
↔
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
≠
V
∨
L
⁡
G
=
V
12
10
11
bitrd
⊢
φ
→
G
∈
C
↔
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
≠
V
∨
L
⁡
G
=
V