Metamath Proof Explorer


Theorem lcfl2

Description: Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses lcfl2.h H = LHyp K
lcfl2.o ˙ = ocH K W
lcfl2.u U = DVecH K W
lcfl2.v V = Base U
lcfl2.f F = LFnl U
lcfl2.l L = LKer U
lcfl2.c C = f F | ˙ ˙ L f = L f
lcfl2.k φ K HL W H
lcfl2.g φ G F
Assertion lcfl2 φ G C ˙ ˙ L G V L G = V

Proof

Step Hyp Ref Expression
1 lcfl2.h H = LHyp K
2 lcfl2.o ˙ = ocH K W
3 lcfl2.u U = DVecH K W
4 lcfl2.v V = Base U
5 lcfl2.f F = LFnl U
6 lcfl2.l L = LKer U
7 lcfl2.c C = f F | ˙ ˙ L f = L f
8 lcfl2.k φ K HL W H
9 lcfl2.g φ G F
10 7 9 lcfl1 φ G C ˙ ˙ L G = L G
11 1 2 3 4 5 6 8 9 dochkrshp4 φ ˙ ˙ L G = L G ˙ ˙ L G V L G = V
12 10 11 bitrd φ G C ˙ ˙ L G V L G = V