Metamath Proof Explorer


Theorem lcfl2

Description: Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses lcfl2.h H=LHypK
lcfl2.o ˙=ocHKW
lcfl2.u U=DVecHKW
lcfl2.v V=BaseU
lcfl2.f F=LFnlU
lcfl2.l L=LKerU
lcfl2.c C=fF|˙˙Lf=Lf
lcfl2.k φKHLWH
lcfl2.g φGF
Assertion lcfl2 φGC˙˙LGVLG=V

Proof

Step Hyp Ref Expression
1 lcfl2.h H=LHypK
2 lcfl2.o ˙=ocHKW
3 lcfl2.u U=DVecHKW
4 lcfl2.v V=BaseU
5 lcfl2.f F=LFnlU
6 lcfl2.l L=LKerU
7 lcfl2.c C=fF|˙˙Lf=Lf
8 lcfl2.k φKHLWH
9 lcfl2.g φGF
10 7 9 lcfl1 φGC˙˙LG=LG
11 1 2 3 4 5 6 8 9 dochkrshp4 φ˙˙LG=LG˙˙LGVLG=V
12 10 11 bitrd φGC˙˙LGVLG=V