Metamath Proof Explorer


Theorem lcfl2

Description: Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses lcfl2.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfl2.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfl2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfl2.v 𝑉 = ( Base ‘ 𝑈 )
lcfl2.f 𝐹 = ( LFnl ‘ 𝑈 )
lcfl2.l 𝐿 = ( LKer ‘ 𝑈 )
lcfl2.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
lcfl2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfl2.g ( 𝜑𝐺𝐹 )
Assertion lcfl2 ( 𝜑 → ( 𝐺𝐶 ↔ ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ 𝑉 ∨ ( 𝐿𝐺 ) = 𝑉 ) ) )

Proof

Step Hyp Ref Expression
1 lcfl2.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfl2.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfl2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfl2.v 𝑉 = ( Base ‘ 𝑈 )
5 lcfl2.f 𝐹 = ( LFnl ‘ 𝑈 )
6 lcfl2.l 𝐿 = ( LKer ‘ 𝑈 )
7 lcfl2.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
8 lcfl2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 lcfl2.g ( 𝜑𝐺𝐹 )
10 7 9 lcfl1 ( 𝜑 → ( 𝐺𝐶 ↔ ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ) )
11 1 2 3 4 5 6 8 9 dochkrshp4 ( 𝜑 → ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) = ( 𝐿𝐺 ) ↔ ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ 𝑉 ∨ ( 𝐿𝐺 ) = 𝑉 ) ) )
12 10 11 bitrd ( 𝜑 → ( 𝐺𝐶 ↔ ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ 𝑉 ∨ ( 𝐿𝐺 ) = 𝑉 ) ) )