Step |
Hyp |
Ref |
Expression |
1 |
|
lcfl3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcfl3.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcfl3.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcfl3.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lcfl3.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
6 |
|
lcfl3.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
7 |
|
lcfl3.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
8 |
|
lcfl3.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
9 |
|
lcfl3.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
lcfl3.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
11 |
1 2 3 4 6 7 8 9 10
|
lcfl2 |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐶 ↔ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) ) ) |
12 |
1 2 3 4 5 6 7 9 10
|
dochkrsat2 |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ↔ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ 𝐴 ) ) |
13 |
12
|
orbi1d |
⊢ ( 𝜑 → ( ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ 𝑉 ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) ↔ ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ 𝐴 ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) ) ) |
14 |
11 13
|
bitrd |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐶 ↔ ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ 𝐴 ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) ) ) |