Metamath Proof Explorer


Theorem lcfl3

Description: Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses lcfl3.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfl3.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfl3.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfl3.v 𝑉 = ( Base ‘ 𝑈 )
lcfl3.a 𝐴 = ( LSAtoms ‘ 𝑈 )
lcfl3.f 𝐹 = ( LFnl ‘ 𝑈 )
lcfl3.l 𝐿 = ( LKer ‘ 𝑈 )
lcfl3.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
lcfl3.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfl3.g ( 𝜑𝐺𝐹 )
Assertion lcfl3 ( 𝜑 → ( 𝐺𝐶 ↔ ( ( ‘ ( 𝐿𝐺 ) ) ∈ 𝐴 ∨ ( 𝐿𝐺 ) = 𝑉 ) ) )

Proof

Step Hyp Ref Expression
1 lcfl3.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfl3.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfl3.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfl3.v 𝑉 = ( Base ‘ 𝑈 )
5 lcfl3.a 𝐴 = ( LSAtoms ‘ 𝑈 )
6 lcfl3.f 𝐹 = ( LFnl ‘ 𝑈 )
7 lcfl3.l 𝐿 = ( LKer ‘ 𝑈 )
8 lcfl3.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
9 lcfl3.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 lcfl3.g ( 𝜑𝐺𝐹 )
11 1 2 3 4 6 7 8 9 10 lcfl2 ( 𝜑 → ( 𝐺𝐶 ↔ ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ 𝑉 ∨ ( 𝐿𝐺 ) = 𝑉 ) ) )
12 1 2 3 4 5 6 7 9 10 dochkrsat2 ( 𝜑 → ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ 𝑉 ↔ ( ‘ ( 𝐿𝐺 ) ) ∈ 𝐴 ) )
13 12 orbi1d ( 𝜑 → ( ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ 𝑉 ∨ ( 𝐿𝐺 ) = 𝑉 ) ↔ ( ( ‘ ( 𝐿𝐺 ) ) ∈ 𝐴 ∨ ( 𝐿𝐺 ) = 𝑉 ) ) )
14 11 13 bitrd ( 𝜑 → ( 𝐺𝐶 ↔ ( ( ‘ ( 𝐿𝐺 ) ) ∈ 𝐴 ∨ ( 𝐿𝐺 ) = 𝑉 ) ) )