Metamath Proof Explorer


Theorem lcfl4N

Description: Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lcfl4.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfl4.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfl4.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfl4.v 𝑉 = ( Base ‘ 𝑈 )
lcfl4.y 𝑌 = ( LSHyp ‘ 𝑈 )
lcfl4.f 𝐹 = ( LFnl ‘ 𝑈 )
lcfl4.l 𝐿 = ( LKer ‘ 𝑈 )
lcfl4.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
lcfl4.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfl4.g ( 𝜑𝐺𝐹 )
Assertion lcfl4N ( 𝜑 → ( 𝐺𝐶 ↔ ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ∈ 𝑌 ∨ ( 𝐿𝐺 ) = 𝑉 ) ) )

Proof

Step Hyp Ref Expression
1 lcfl4.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfl4.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfl4.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfl4.v 𝑉 = ( Base ‘ 𝑈 )
5 lcfl4.y 𝑌 = ( LSHyp ‘ 𝑈 )
6 lcfl4.f 𝐹 = ( LFnl ‘ 𝑈 )
7 lcfl4.l 𝐿 = ( LKer ‘ 𝑈 )
8 lcfl4.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
9 lcfl4.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 lcfl4.g ( 𝜑𝐺𝐹 )
11 eqid ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 )
12 1 2 3 4 11 6 7 8 9 10 lcfl3 ( 𝜑 → ( 𝐺𝐶 ↔ ( ( ‘ ( 𝐿𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ∨ ( 𝐿𝐺 ) = 𝑉 ) ) )
13 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
14 1 3 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
15 4 6 7 14 10 lkrssv ( 𝜑 → ( 𝐿𝐺 ) ⊆ 𝑉 )
16 1 3 4 13 2 dochlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐿𝐺 ) ⊆ 𝑉 ) → ( ‘ ( 𝐿𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
17 9 15 16 syl2anc ( 𝜑 → ( ‘ ( 𝐿𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
18 1 2 3 13 11 5 9 17 dochsatshpb ( 𝜑 → ( ( ‘ ( 𝐿𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ↔ ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ∈ 𝑌 ) )
19 18 orbi1d ( 𝜑 → ( ( ( ‘ ( 𝐿𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ∨ ( 𝐿𝐺 ) = 𝑉 ) ↔ ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ∈ 𝑌 ∨ ( 𝐿𝐺 ) = 𝑉 ) ) )
20 12 19 bitrd ( 𝜑 → ( 𝐺𝐶 ↔ ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ∈ 𝑌 ∨ ( 𝐿𝐺 ) = 𝑉 ) ) )