| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcfl4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lcfl4.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lcfl4.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
lcfl4.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
lcfl4.y |
⊢ 𝑌 = ( LSHyp ‘ 𝑈 ) |
| 6 |
|
lcfl4.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 7 |
|
lcfl4.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 8 |
|
lcfl4.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
| 9 |
|
lcfl4.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
lcfl4.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 11 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
| 12 |
1 2 3 4 11 6 7 8 9 10
|
lcfl3 |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐶 ↔ ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) ) ) |
| 13 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 14 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 15 |
4 6 7 14 10
|
lkrssv |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ⊆ 𝑉 ) |
| 16 |
1 3 4 13 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 17 |
9 15 16
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 18 |
1 2 3 13 11 5 9 17
|
dochsatshpb |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 ) ) |
| 19 |
18
|
orbi1d |
⊢ ( 𝜑 → ( ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) ↔ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) ) ) |
| 20 |
12 19
|
bitrd |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐶 ↔ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) ) ) |