Step |
Hyp |
Ref |
Expression |
1 |
|
lcfl4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcfl4.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcfl4.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcfl4.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lcfl4.y |
⊢ 𝑌 = ( LSHyp ‘ 𝑈 ) |
6 |
|
lcfl4.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
7 |
|
lcfl4.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
8 |
|
lcfl4.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
9 |
|
lcfl4.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
lcfl4.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
11 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
12 |
1 2 3 4 11 6 7 8 9 10
|
lcfl3 |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐶 ↔ ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) ) ) |
13 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
14 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
15 |
4 6 7 14 10
|
lkrssv |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ⊆ 𝑉 ) |
16 |
1 3 4 13 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
17 |
9 15 16
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
18 |
1 2 3 13 11 5 9 17
|
dochsatshpb |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 ) ) |
19 |
18
|
orbi1d |
⊢ ( 𝜑 → ( ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) ↔ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) ) ) |
20 |
12 19
|
bitrd |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝐶 ↔ ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ 𝑌 ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) ) ) |