Metamath Proof Explorer


Theorem lcfl4N

Description: Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lcfl4.h H=LHypK
lcfl4.o ˙=ocHKW
lcfl4.u U=DVecHKW
lcfl4.v V=BaseU
lcfl4.y Y=LSHypU
lcfl4.f F=LFnlU
lcfl4.l L=LKerU
lcfl4.c C=fF|˙˙Lf=Lf
lcfl4.k φKHLWH
lcfl4.g φGF
Assertion lcfl4N φGC˙˙LGYLG=V

Proof

Step Hyp Ref Expression
1 lcfl4.h H=LHypK
2 lcfl4.o ˙=ocHKW
3 lcfl4.u U=DVecHKW
4 lcfl4.v V=BaseU
5 lcfl4.y Y=LSHypU
6 lcfl4.f F=LFnlU
7 lcfl4.l L=LKerU
8 lcfl4.c C=fF|˙˙Lf=Lf
9 lcfl4.k φKHLWH
10 lcfl4.g φGF
11 eqid LSAtomsU=LSAtomsU
12 1 2 3 4 11 6 7 8 9 10 lcfl3 φGC˙LGLSAtomsULG=V
13 eqid LSubSpU=LSubSpU
14 1 3 9 dvhlmod φULMod
15 4 6 7 14 10 lkrssv φLGV
16 1 3 4 13 2 dochlss KHLWHLGV˙LGLSubSpU
17 9 15 16 syl2anc φ˙LGLSubSpU
18 1 2 3 13 11 5 9 17 dochsatshpb φ˙LGLSAtomsU˙˙LGY
19 18 orbi1d φ˙LGLSAtomsULG=V˙˙LGYLG=V
20 12 19 bitrd φGC˙˙LGYLG=V