Metamath Proof Explorer


Theorem lcfl3

Description: Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses lcfl3.h H=LHypK
lcfl3.o ˙=ocHKW
lcfl3.u U=DVecHKW
lcfl3.v V=BaseU
lcfl3.a A=LSAtomsU
lcfl3.f F=LFnlU
lcfl3.l L=LKerU
lcfl3.c C=fF|˙˙Lf=Lf
lcfl3.k φKHLWH
lcfl3.g φGF
Assertion lcfl3 φGC˙LGALG=V

Proof

Step Hyp Ref Expression
1 lcfl3.h H=LHypK
2 lcfl3.o ˙=ocHKW
3 lcfl3.u U=DVecHKW
4 lcfl3.v V=BaseU
5 lcfl3.a A=LSAtomsU
6 lcfl3.f F=LFnlU
7 lcfl3.l L=LKerU
8 lcfl3.c C=fF|˙˙Lf=Lf
9 lcfl3.k φKHLWH
10 lcfl3.g φGF
11 1 2 3 4 6 7 8 9 10 lcfl2 φGC˙˙LGVLG=V
12 1 2 3 4 5 6 7 9 10 dochkrsat2 φ˙˙LGV˙LGA
13 12 orbi1d φ˙˙LGVLG=V˙LGALG=V
14 11 13 bitrd φGC˙LGALG=V