Metamath Proof Explorer


Theorem lcfl3

Description: Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses lcfl3.h
|- H = ( LHyp ` K )
lcfl3.o
|- ._|_ = ( ( ocH ` K ) ` W )
lcfl3.u
|- U = ( ( DVecH ` K ) ` W )
lcfl3.v
|- V = ( Base ` U )
lcfl3.a
|- A = ( LSAtoms ` U )
lcfl3.f
|- F = ( LFnl ` U )
lcfl3.l
|- L = ( LKer ` U )
lcfl3.c
|- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
lcfl3.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcfl3.g
|- ( ph -> G e. F )
Assertion lcfl3
|- ( ph -> ( G e. C <-> ( ( ._|_ ` ( L ` G ) ) e. A \/ ( L ` G ) = V ) ) )

Proof

Step Hyp Ref Expression
1 lcfl3.h
 |-  H = ( LHyp ` K )
2 lcfl3.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 lcfl3.u
 |-  U = ( ( DVecH ` K ) ` W )
4 lcfl3.v
 |-  V = ( Base ` U )
5 lcfl3.a
 |-  A = ( LSAtoms ` U )
6 lcfl3.f
 |-  F = ( LFnl ` U )
7 lcfl3.l
 |-  L = ( LKer ` U )
8 lcfl3.c
 |-  C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
9 lcfl3.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 lcfl3.g
 |-  ( ph -> G e. F )
11 1 2 3 4 6 7 8 9 10 lcfl2
 |-  ( ph -> ( G e. C <-> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= V \/ ( L ` G ) = V ) ) )
12 1 2 3 4 5 6 7 9 10 dochkrsat2
 |-  ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= V <-> ( ._|_ ` ( L ` G ) ) e. A ) )
13 12 orbi1d
 |-  ( ph -> ( ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= V \/ ( L ` G ) = V ) <-> ( ( ._|_ ` ( L ` G ) ) e. A \/ ( L ` G ) = V ) ) )
14 11 13 bitrd
 |-  ( ph -> ( G e. C <-> ( ( ._|_ ` ( L ` G ) ) e. A \/ ( L ` G ) = V ) ) )