Step |
Hyp |
Ref |
Expression |
1 |
|
lcfl3.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfl3.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcfl3.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcfl3.v |
|- V = ( Base ` U ) |
5 |
|
lcfl3.a |
|- A = ( LSAtoms ` U ) |
6 |
|
lcfl3.f |
|- F = ( LFnl ` U ) |
7 |
|
lcfl3.l |
|- L = ( LKer ` U ) |
8 |
|
lcfl3.c |
|- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
9 |
|
lcfl3.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
lcfl3.g |
|- ( ph -> G e. F ) |
11 |
1 2 3 4 6 7 8 9 10
|
lcfl2 |
|- ( ph -> ( G e. C <-> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= V \/ ( L ` G ) = V ) ) ) |
12 |
1 2 3 4 5 6 7 9 10
|
dochkrsat2 |
|- ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= V <-> ( ._|_ ` ( L ` G ) ) e. A ) ) |
13 |
12
|
orbi1d |
|- ( ph -> ( ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= V \/ ( L ` G ) = V ) <-> ( ( ._|_ ` ( L ` G ) ) e. A \/ ( L ` G ) = V ) ) ) |
14 |
11 13
|
bitrd |
|- ( ph -> ( G e. C <-> ( ( ._|_ ` ( L ` G ) ) e. A \/ ( L ` G ) = V ) ) ) |