Step |
Hyp |
Ref |
Expression |
1 |
|
lcfl4.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfl4.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcfl4.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcfl4.v |
|- V = ( Base ` U ) |
5 |
|
lcfl4.y |
|- Y = ( LSHyp ` U ) |
6 |
|
lcfl4.f |
|- F = ( LFnl ` U ) |
7 |
|
lcfl4.l |
|- L = ( LKer ` U ) |
8 |
|
lcfl4.c |
|- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
9 |
|
lcfl4.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
lcfl4.g |
|- ( ph -> G e. F ) |
11 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
12 |
1 2 3 4 11 6 7 8 9 10
|
lcfl3 |
|- ( ph -> ( G e. C <-> ( ( ._|_ ` ( L ` G ) ) e. ( LSAtoms ` U ) \/ ( L ` G ) = V ) ) ) |
13 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
14 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
15 |
4 6 7 14 10
|
lkrssv |
|- ( ph -> ( L ` G ) C_ V ) |
16 |
1 3 4 13 2
|
dochlss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( L ` G ) C_ V ) -> ( ._|_ ` ( L ` G ) ) e. ( LSubSp ` U ) ) |
17 |
9 15 16
|
syl2anc |
|- ( ph -> ( ._|_ ` ( L ` G ) ) e. ( LSubSp ` U ) ) |
18 |
1 2 3 13 11 5 9 17
|
dochsatshpb |
|- ( ph -> ( ( ._|_ ` ( L ` G ) ) e. ( LSAtoms ` U ) <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) e. Y ) ) |
19 |
18
|
orbi1d |
|- ( ph -> ( ( ( ._|_ ` ( L ` G ) ) e. ( LSAtoms ` U ) \/ ( L ` G ) = V ) <-> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) e. Y \/ ( L ` G ) = V ) ) ) |
20 |
12 19
|
bitrd |
|- ( ph -> ( G e. C <-> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) e. Y \/ ( L ` G ) = V ) ) ) |