| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcfl5.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | lcfl5.i |  |-  I = ( ( DIsoH ` K ) ` W ) | 
						
							| 3 |  | lcfl5.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 4 |  | lcfl5.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 5 |  | lcfl5.f |  |-  F = ( LFnl ` U ) | 
						
							| 6 |  | lcfl5.l |  |-  L = ( LKer ` U ) | 
						
							| 7 |  | lcfl5.c |  |-  C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } | 
						
							| 8 |  | lcfl5.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | lcfl5.g |  |-  ( ph -> G e. F ) | 
						
							| 10 | 7 9 | lcfl1 |  |-  ( ph -> ( G e. C <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) ) | 
						
							| 11 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 12 | 1 4 8 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 13 | 11 5 6 12 9 | lkrssv |  |-  ( ph -> ( L ` G ) C_ ( Base ` U ) ) | 
						
							| 14 | 1 2 4 11 3 8 13 | dochoccl |  |-  ( ph -> ( ( L ` G ) e. ran I <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) ) | 
						
							| 15 | 10 14 | bitr4d |  |-  ( ph -> ( G e. C <-> ( L ` G ) e. ran I ) ) |