Metamath Proof Explorer


Theorem lcfl5

Description: Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses lcfl5.h
|- H = ( LHyp ` K )
lcfl5.i
|- I = ( ( DIsoH ` K ) ` W )
lcfl5.o
|- ._|_ = ( ( ocH ` K ) ` W )
lcfl5.u
|- U = ( ( DVecH ` K ) ` W )
lcfl5.f
|- F = ( LFnl ` U )
lcfl5.l
|- L = ( LKer ` U )
lcfl5.c
|- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
lcfl5.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcfl5.g
|- ( ph -> G e. F )
Assertion lcfl5
|- ( ph -> ( G e. C <-> ( L ` G ) e. ran I ) )

Proof

Step Hyp Ref Expression
1 lcfl5.h
 |-  H = ( LHyp ` K )
2 lcfl5.i
 |-  I = ( ( DIsoH ` K ) ` W )
3 lcfl5.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
4 lcfl5.u
 |-  U = ( ( DVecH ` K ) ` W )
5 lcfl5.f
 |-  F = ( LFnl ` U )
6 lcfl5.l
 |-  L = ( LKer ` U )
7 lcfl5.c
 |-  C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
8 lcfl5.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 lcfl5.g
 |-  ( ph -> G e. F )
10 7 9 lcfl1
 |-  ( ph -> ( G e. C <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) )
11 eqid
 |-  ( Base ` U ) = ( Base ` U )
12 1 4 8 dvhlmod
 |-  ( ph -> U e. LMod )
13 11 5 6 12 9 lkrssv
 |-  ( ph -> ( L ` G ) C_ ( Base ` U ) )
14 1 2 4 11 3 8 13 dochoccl
 |-  ( ph -> ( ( L ` G ) e. ran I <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) )
15 10 14 bitr4d
 |-  ( ph -> ( G e. C <-> ( L ` G ) e. ran I ) )