Step |
Hyp |
Ref |
Expression |
1 |
|
lcfl5.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfl5.i |
|- I = ( ( DIsoH ` K ) ` W ) |
3 |
|
lcfl5.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
4 |
|
lcfl5.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
lcfl5.f |
|- F = ( LFnl ` U ) |
6 |
|
lcfl5.l |
|- L = ( LKer ` U ) |
7 |
|
lcfl5.c |
|- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
8 |
|
lcfl5.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
lcfl5.g |
|- ( ph -> G e. F ) |
10 |
7 9
|
lcfl1 |
|- ( ph -> ( G e. C <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) ) |
11 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
12 |
1 4 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
13 |
11 5 6 12 9
|
lkrssv |
|- ( ph -> ( L ` G ) C_ ( Base ` U ) ) |
14 |
1 2 4 11 3 8 13
|
dochoccl |
|- ( ph -> ( ( L ` G ) e. ran I <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) ) ) |
15 |
10 14
|
bitr4d |
|- ( ph -> ( G e. C <-> ( L ` G ) e. ran I ) ) |