Metamath Proof Explorer


Theorem lcfl5

Description: Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses lcfl5.h H = LHyp K
lcfl5.i I = DIsoH K W
lcfl5.o ˙ = ocH K W
lcfl5.u U = DVecH K W
lcfl5.f F = LFnl U
lcfl5.l L = LKer U
lcfl5.c C = f F | ˙ ˙ L f = L f
lcfl5.k φ K HL W H
lcfl5.g φ G F
Assertion lcfl5 φ G C L G ran I

Proof

Step Hyp Ref Expression
1 lcfl5.h H = LHyp K
2 lcfl5.i I = DIsoH K W
3 lcfl5.o ˙ = ocH K W
4 lcfl5.u U = DVecH K W
5 lcfl5.f F = LFnl U
6 lcfl5.l L = LKer U
7 lcfl5.c C = f F | ˙ ˙ L f = L f
8 lcfl5.k φ K HL W H
9 lcfl5.g φ G F
10 7 9 lcfl1 φ G C ˙ ˙ L G = L G
11 eqid Base U = Base U
12 1 4 8 dvhlmod φ U LMod
13 11 5 6 12 9 lkrssv φ L G Base U
14 1 2 4 11 3 8 13 dochoccl φ L G ran I ˙ ˙ L G = L G
15 10 14 bitr4d φ G C L G ran I