Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
lcfl5
Next ⟩
lcfl5a
Metamath Proof Explorer
Ascii
Unicode
Theorem
lcfl5
Description:
Property of a functional with a closed kernel.
(Contributed by
NM
, 1-Jan-2015)
Ref
Expression
Hypotheses
lcfl5.h
⊢
H
=
LHyp
⁡
K
lcfl5.i
⊢
I
=
DIsoH
⁡
K
⁡
W
lcfl5.o
⊢
⊥
˙
=
ocH
⁡
K
⁡
W
lcfl5.u
⊢
U
=
DVecH
⁡
K
⁡
W
lcfl5.f
⊢
F
=
LFnl
⁡
U
lcfl5.l
⊢
L
=
LKer
⁡
U
lcfl5.c
⊢
C
=
f
∈
F
|
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
lcfl5.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
lcfl5.g
⊢
φ
→
G
∈
F
Assertion
lcfl5
⊢
φ
→
G
∈
C
↔
L
⁡
G
∈
ran
⁡
I
Proof
Step
Hyp
Ref
Expression
1
lcfl5.h
⊢
H
=
LHyp
⁡
K
2
lcfl5.i
⊢
I
=
DIsoH
⁡
K
⁡
W
3
lcfl5.o
⊢
⊥
˙
=
ocH
⁡
K
⁡
W
4
lcfl5.u
⊢
U
=
DVecH
⁡
K
⁡
W
5
lcfl5.f
⊢
F
=
LFnl
⁡
U
6
lcfl5.l
⊢
L
=
LKer
⁡
U
7
lcfl5.c
⊢
C
=
f
∈
F
|
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
8
lcfl5.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
9
lcfl5.g
⊢
φ
→
G
∈
F
10
7
9
lcfl1
⊢
φ
→
G
∈
C
↔
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
11
eqid
⊢
Base
U
=
Base
U
12
1
4
8
dvhlmod
⊢
φ
→
U
∈
LMod
13
11
5
6
12
9
lkrssv
⊢
φ
→
L
⁡
G
⊆
Base
U
14
1
2
4
11
3
8
13
dochoccl
⊢
φ
→
L
⁡
G
∈
ran
⁡
I
↔
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
15
10
14
bitr4d
⊢
φ
→
G
∈
C
↔
L
⁡
G
∈
ran
⁡
I