Metamath Proof Explorer


Theorem lcfl5

Description: Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses lcfl5.h H=LHypK
lcfl5.i I=DIsoHKW
lcfl5.o ˙=ocHKW
lcfl5.u U=DVecHKW
lcfl5.f F=LFnlU
lcfl5.l L=LKerU
lcfl5.c C=fF|˙˙Lf=Lf
lcfl5.k φKHLWH
lcfl5.g φGF
Assertion lcfl5 φGCLGranI

Proof

Step Hyp Ref Expression
1 lcfl5.h H=LHypK
2 lcfl5.i I=DIsoHKW
3 lcfl5.o ˙=ocHKW
4 lcfl5.u U=DVecHKW
5 lcfl5.f F=LFnlU
6 lcfl5.l L=LKerU
7 lcfl5.c C=fF|˙˙Lf=Lf
8 lcfl5.k φKHLWH
9 lcfl5.g φGF
10 7 9 lcfl1 φGC˙˙LG=LG
11 eqid BaseU=BaseU
12 1 4 8 dvhlmod φULMod
13 11 5 6 12 9 lkrssv φLGBaseU
14 1 2 4 11 3 8 13 dochoccl φLGranI˙˙LG=LG
15 10 14 bitr4d φGCLGranI