Step |
Hyp |
Ref |
Expression |
1 |
|
dochkrsat2.h |
|- H = ( LHyp ` K ) |
2 |
|
dochkrsat2.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
dochkrsat2.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
dochkrsat2.v |
|- V = ( Base ` U ) |
5 |
|
dochkrsat2.a |
|- A = ( LSAtoms ` U ) |
6 |
|
dochkrsat2.f |
|- F = ( LFnl ` U ) |
7 |
|
dochkrsat2.l |
|- L = ( LKer ` U ) |
8 |
|
dochkrsat2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
dochkrsat2.g |
|- ( ph -> G e. F ) |
10 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
11 |
1 3 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
12 |
4 6 7 11 9
|
lkrssv |
|- ( ph -> ( L ` G ) C_ V ) |
13 |
1 2 3 4 10 8 12
|
dochn0nv |
|- ( ph -> ( ( ._|_ ` ( L ` G ) ) =/= { ( 0g ` U ) } <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= V ) ) |
14 |
1 2 3 5 6 7 10 8 9
|
dochkrsat |
|- ( ph -> ( ( ._|_ ` ( L ` G ) ) =/= { ( 0g ` U ) } <-> ( ._|_ ` ( L ` G ) ) e. A ) ) |
15 |
13 14
|
bitr3d |
|- ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= V <-> ( ._|_ ` ( L ` G ) ) e. A ) ) |