Description: The orthocomplement of a kernel is either an atom or zero. (Contributed by NM, 29-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dochsat0.h | |- H = ( LHyp ` K ) |
|
dochsat0.o | |- ._|_ = ( ( ocH ` K ) ` W ) |
||
dochsat0.u | |- U = ( ( DVecH ` K ) ` W ) |
||
dochsat0.z | |- .0. = ( 0g ` U ) |
||
dochsat0.a | |- A = ( LSAtoms ` U ) |
||
dochsat0.f | |- F = ( LFnl ` U ) |
||
dochsat0.l | |- L = ( LKer ` U ) |
||
dochsat0.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
dochsat0.g | |- ( ph -> G e. F ) |
||
Assertion | dochsat0 | |- ( ph -> ( ( ._|_ ` ( L ` G ) ) e. A \/ ( ._|_ ` ( L ` G ) ) = { .0. } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochsat0.h | |- H = ( LHyp ` K ) |
|
2 | dochsat0.o | |- ._|_ = ( ( ocH ` K ) ` W ) |
|
3 | dochsat0.u | |- U = ( ( DVecH ` K ) ` W ) |
|
4 | dochsat0.z | |- .0. = ( 0g ` U ) |
|
5 | dochsat0.a | |- A = ( LSAtoms ` U ) |
|
6 | dochsat0.f | |- F = ( LFnl ` U ) |
|
7 | dochsat0.l | |- L = ( LKer ` U ) |
|
8 | dochsat0.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
9 | dochsat0.g | |- ( ph -> G e. F ) |
|
10 | 1 2 3 5 6 7 4 8 9 | dochkrsat | |- ( ph -> ( ( ._|_ ` ( L ` G ) ) =/= { .0. } <-> ( ._|_ ` ( L ` G ) ) e. A ) ) |
11 | 10 | biimpd | |- ( ph -> ( ( ._|_ ` ( L ` G ) ) =/= { .0. } -> ( ._|_ ` ( L ` G ) ) e. A ) ) |
12 | 11 | necon1bd | |- ( ph -> ( -. ( ._|_ ` ( L ` G ) ) e. A -> ( ._|_ ` ( L ` G ) ) = { .0. } ) ) |
13 | 12 | orrd | |- ( ph -> ( ( ._|_ ` ( L ` G ) ) e. A \/ ( ._|_ ` ( L ` G ) ) = { .0. } ) ) |