Metamath Proof Explorer


Theorem dochsat0

Description: The orthocomplement of a kernel is either an atom or zero. (Contributed by NM, 29-Jan-2015)

Ref Expression
Hypotheses dochsat0.h
|- H = ( LHyp ` K )
dochsat0.o
|- ._|_ = ( ( ocH ` K ) ` W )
dochsat0.u
|- U = ( ( DVecH ` K ) ` W )
dochsat0.z
|- .0. = ( 0g ` U )
dochsat0.a
|- A = ( LSAtoms ` U )
dochsat0.f
|- F = ( LFnl ` U )
dochsat0.l
|- L = ( LKer ` U )
dochsat0.k
|- ( ph -> ( K e. HL /\ W e. H ) )
dochsat0.g
|- ( ph -> G e. F )
Assertion dochsat0
|- ( ph -> ( ( ._|_ ` ( L ` G ) ) e. A \/ ( ._|_ ` ( L ` G ) ) = { .0. } ) )

Proof

Step Hyp Ref Expression
1 dochsat0.h
 |-  H = ( LHyp ` K )
2 dochsat0.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 dochsat0.u
 |-  U = ( ( DVecH ` K ) ` W )
4 dochsat0.z
 |-  .0. = ( 0g ` U )
5 dochsat0.a
 |-  A = ( LSAtoms ` U )
6 dochsat0.f
 |-  F = ( LFnl ` U )
7 dochsat0.l
 |-  L = ( LKer ` U )
8 dochsat0.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 dochsat0.g
 |-  ( ph -> G e. F )
10 1 2 3 5 6 7 4 8 9 dochkrsat
 |-  ( ph -> ( ( ._|_ ` ( L ` G ) ) =/= { .0. } <-> ( ._|_ ` ( L ` G ) ) e. A ) )
11 10 biimpd
 |-  ( ph -> ( ( ._|_ ` ( L ` G ) ) =/= { .0. } -> ( ._|_ ` ( L ` G ) ) e. A ) )
12 11 necon1bd
 |-  ( ph -> ( -. ( ._|_ ` ( L ` G ) ) e. A -> ( ._|_ ` ( L ` G ) ) = { .0. } ) )
13 12 orrd
 |-  ( ph -> ( ( ._|_ ` ( L ` G ) ) e. A \/ ( ._|_ ` ( L ` G ) ) = { .0. } ) )