| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochsat0.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dochsat0.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 3 |
|
dochsat0.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
dochsat0.z |
|- .0. = ( 0g ` U ) |
| 5 |
|
dochsat0.a |
|- A = ( LSAtoms ` U ) |
| 6 |
|
dochsat0.f |
|- F = ( LFnl ` U ) |
| 7 |
|
dochsat0.l |
|- L = ( LKer ` U ) |
| 8 |
|
dochsat0.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
dochsat0.g |
|- ( ph -> G e. F ) |
| 10 |
1 2 3 5 6 7 4 8 9
|
dochkrsat |
|- ( ph -> ( ( ._|_ ` ( L ` G ) ) =/= { .0. } <-> ( ._|_ ` ( L ` G ) ) e. A ) ) |
| 11 |
10
|
biimpd |
|- ( ph -> ( ( ._|_ ` ( L ` G ) ) =/= { .0. } -> ( ._|_ ` ( L ` G ) ) e. A ) ) |
| 12 |
11
|
necon1bd |
|- ( ph -> ( -. ( ._|_ ` ( L ` G ) ) e. A -> ( ._|_ ` ( L ` G ) ) = { .0. } ) ) |
| 13 |
12
|
orrd |
|- ( ph -> ( ( ._|_ ` ( L ` G ) ) e. A \/ ( ._|_ ` ( L ` G ) ) = { .0. } ) ) |