Metamath Proof Explorer
Description: The orthocomplement of a kernel is either an atom or zero. (Contributed by NM, 29-Jan-2015)
|
|
Ref |
Expression |
|
Hypotheses |
dochsat0.h |
|
|
|
dochsat0.o |
|
|
|
dochsat0.u |
|
|
|
dochsat0.z |
|
|
|
dochsat0.a |
|
|
|
dochsat0.f |
|
|
|
dochsat0.l |
|
|
|
dochsat0.k |
|
|
|
dochsat0.g |
|
|
Assertion |
dochsat0 |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
dochsat0.h |
|
2 |
|
dochsat0.o |
|
3 |
|
dochsat0.u |
|
4 |
|
dochsat0.z |
|
5 |
|
dochsat0.a |
|
6 |
|
dochsat0.f |
|
7 |
|
dochsat0.l |
|
8 |
|
dochsat0.k |
|
9 |
|
dochsat0.g |
|
10 |
1 2 3 5 6 7 4 8 9
|
dochkrsat |
|
11 |
10
|
biimpd |
|
12 |
11
|
necon1bd |
|
13 |
12
|
orrd |
|