Metamath Proof Explorer


Theorem dochsat0

Description: The orthocomplement of a kernel is either an atom or zero. (Contributed by NM, 29-Jan-2015)

Ref Expression
Hypotheses dochsat0.h H=LHypK
dochsat0.o ˙=ocHKW
dochsat0.u U=DVecHKW
dochsat0.z 0˙=0U
dochsat0.a A=LSAtomsU
dochsat0.f F=LFnlU
dochsat0.l L=LKerU
dochsat0.k φKHLWH
dochsat0.g φGF
Assertion dochsat0 φ˙LGA˙LG=0˙

Proof

Step Hyp Ref Expression
1 dochsat0.h H=LHypK
2 dochsat0.o ˙=ocHKW
3 dochsat0.u U=DVecHKW
4 dochsat0.z 0˙=0U
5 dochsat0.a A=LSAtomsU
6 dochsat0.f F=LFnlU
7 dochsat0.l L=LKerU
8 dochsat0.k φKHLWH
9 dochsat0.g φGF
10 1 2 3 5 6 7 4 8 9 dochkrsat φ˙LG0˙˙LGA
11 10 biimpd φ˙LG0˙˙LGA
12 11 necon1bd φ¬˙LGA˙LG=0˙
13 12 orrd φ˙LGA˙LG=0˙