Metamath Proof Explorer


Theorem dochkrsm

Description: The subspace sum of a closed subspace and a kernel orthocomplement is closed. ( djhlsmcl can be used to convert sum to join.) (Contributed by NM, 29-Jan-2015)

Ref Expression
Hypotheses dochkrsm.h H = LHyp K
dochkrsm.i I = DIsoH K W
dochkrsm.o ˙ = ocH K W
dochkrsm.u U = DVecH K W
dochkrsm.p ˙ = LSSum U
dochkrsm.f F = LFnl U
dochkrsm.l L = LKer U
dochkrsm.k φ K HL W H
dochkrsm.x φ X ran I
dochkrsm.g φ G F
Assertion dochkrsm φ X ˙ ˙ L G ran I

Proof

Step Hyp Ref Expression
1 dochkrsm.h H = LHyp K
2 dochkrsm.i I = DIsoH K W
3 dochkrsm.o ˙ = ocH K W
4 dochkrsm.u U = DVecH K W
5 dochkrsm.p ˙ = LSSum U
6 dochkrsm.f F = LFnl U
7 dochkrsm.l L = LKer U
8 dochkrsm.k φ K HL W H
9 dochkrsm.x φ X ran I
10 dochkrsm.g φ G F
11 eqid LSAtoms U = LSAtoms U
12 8 adantr φ ˙ L G LSAtoms U K HL W H
13 9 adantr φ ˙ L G LSAtoms U X ran I
14 simpr φ ˙ L G LSAtoms U ˙ L G LSAtoms U
15 1 2 4 5 11 12 13 14 dihsmatrn φ ˙ L G LSAtoms U X ˙ ˙ L G ran I
16 oveq2 ˙ L G = 0 U X ˙ ˙ L G = X ˙ 0 U
17 1 4 8 dvhlmod φ U LMod
18 eqid LSubSp U = LSubSp U
19 1 4 2 18 dihrnlss K HL W H X ran I X LSubSp U
20 8 9 19 syl2anc φ X LSubSp U
21 18 lsssubg U LMod X LSubSp U X SubGrp U
22 17 20 21 syl2anc φ X SubGrp U
23 eqid 0 U = 0 U
24 23 5 lsm01 X SubGrp U X ˙ 0 U = X
25 22 24 syl φ X ˙ 0 U = X
26 16 25 sylan9eqr φ ˙ L G = 0 U X ˙ ˙ L G = X
27 9 adantr φ ˙ L G = 0 U X ran I
28 26 27 eqeltrd φ ˙ L G = 0 U X ˙ ˙ L G ran I
29 1 3 4 23 11 6 7 8 10 dochsat0 φ ˙ L G LSAtoms U ˙ L G = 0 U
30 15 28 29 mpjaodan φ X ˙ ˙ L G ran I