Metamath Proof Explorer


Theorem dihsmatrn

Description: The subspace sum of a closed subspace and an atom is closed. TODO: see if proof at http://math.stackexchange.com/a/1233211/50776 and Mon, 13 Apr 2015 20:44:07 -0400 email could be used instead of this and dihjat2 . (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses dihsmatrn.h H=LHypK
dihsmatrn.i I=DIsoHKW
dihsmatrn.u U=DVecHKW
dihsmatrn.p ˙=LSSumU
dihsmatrn.a A=LSAtomsU
dihsmatrn.k φKHLWH
dihsmatrn.x φXranI
dihsmatrn.q φQA
Assertion dihsmatrn φX˙QranI

Proof

Step Hyp Ref Expression
1 dihsmatrn.h H=LHypK
2 dihsmatrn.i I=DIsoHKW
3 dihsmatrn.u U=DVecHKW
4 dihsmatrn.p ˙=LSSumU
5 dihsmatrn.a A=LSAtomsU
6 dihsmatrn.k φKHLWH
7 dihsmatrn.x φXranI
8 dihsmatrn.q φQA
9 eqid joinHKW=joinHKW
10 1 2 9 3 4 5 6 7 8 dihjat2 φXjoinHKWQ=X˙Q
11 10 eqcomd φX˙Q=XjoinHKWQ
12 eqid BaseU=BaseU
13 eqid LSubSpU=LSubSpU
14 1 3 2 13 dihrnlss KHLWHXranIXLSubSpU
15 6 7 14 syl2anc φXLSubSpU
16 1 3 6 dvhlmod φULMod
17 13 5 16 8 lsatlssel φQLSubSpU
18 1 3 12 13 4 2 9 6 15 17 djhlsmcl φX˙QranIX˙Q=XjoinHKWQ
19 11 18 mpbird φX˙QranI