Metamath Proof Explorer


Theorem dihsmatrn

Description: The subspace sum of a closed subspace and an atom is closed. TODO: see if proof at http://math.stackexchange.com/a/1233211/50776 and Mon, 13 Apr 2015 20:44:07 -0400 email could be used instead of this and dihjat2 . (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses dihsmatrn.h H = LHyp K
dihsmatrn.i I = DIsoH K W
dihsmatrn.u U = DVecH K W
dihsmatrn.p ˙ = LSSum U
dihsmatrn.a A = LSAtoms U
dihsmatrn.k φ K HL W H
dihsmatrn.x φ X ran I
dihsmatrn.q φ Q A
Assertion dihsmatrn φ X ˙ Q ran I

Proof

Step Hyp Ref Expression
1 dihsmatrn.h H = LHyp K
2 dihsmatrn.i I = DIsoH K W
3 dihsmatrn.u U = DVecH K W
4 dihsmatrn.p ˙ = LSSum U
5 dihsmatrn.a A = LSAtoms U
6 dihsmatrn.k φ K HL W H
7 dihsmatrn.x φ X ran I
8 dihsmatrn.q φ Q A
9 eqid joinH K W = joinH K W
10 1 2 9 3 4 5 6 7 8 dihjat2 φ X joinH K W Q = X ˙ Q
11 10 eqcomd φ X ˙ Q = X joinH K W Q
12 eqid Base U = Base U
13 eqid LSubSp U = LSubSp U
14 1 3 2 13 dihrnlss K HL W H X ran I X LSubSp U
15 6 7 14 syl2anc φ X LSubSp U
16 1 3 6 dvhlmod φ U LMod
17 13 5 16 8 lsatlssel φ Q LSubSp U
18 1 3 12 13 4 2 9 6 15 17 djhlsmcl φ X ˙ Q ran I X ˙ Q = X joinH K W Q
19 11 18 mpbird φ X ˙ Q ran I