Step |
Hyp |
Ref |
Expression |
1 |
|
dihsmatrn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dihsmatrn.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dihsmatrn.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dihsmatrn.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
5 |
|
dihsmatrn.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
6 |
|
dihsmatrn.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
dihsmatrn.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝐼 ) |
8 |
|
dihsmatrn.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
9 |
|
eqid |
⊢ ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
1 2 9 3 4 5 6 7 8
|
dihjat2 |
⊢ ( 𝜑 → ( 𝑋 ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) 𝑄 ) = ( 𝑋 ⊕ 𝑄 ) ) |
11 |
10
|
eqcomd |
⊢ ( 𝜑 → ( 𝑋 ⊕ 𝑄 ) = ( 𝑋 ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) 𝑄 ) ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
13 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
14 |
1 3 2 13
|
dihrnlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ∈ ( LSubSp ‘ 𝑈 ) ) |
15 |
6 7 14
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ ( LSubSp ‘ 𝑈 ) ) |
16 |
1 3 6
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
17 |
13 5 16 8
|
lsatlssel |
⊢ ( 𝜑 → 𝑄 ∈ ( LSubSp ‘ 𝑈 ) ) |
18 |
1 3 12 13 4 2 9 6 15 17
|
djhlsmcl |
⊢ ( 𝜑 → ( ( 𝑋 ⊕ 𝑄 ) ∈ ran 𝐼 ↔ ( 𝑋 ⊕ 𝑄 ) = ( 𝑋 ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) 𝑄 ) ) ) |
19 |
11 18
|
mpbird |
⊢ ( 𝜑 → ( 𝑋 ⊕ 𝑄 ) ∈ ran 𝐼 ) |