Step |
Hyp |
Ref |
Expression |
1 |
|
dihjat5.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihjat5.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dihjat5.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dihjat5.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dihjat5.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
dihjat5.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
7 |
|
dihjat5.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihjat5.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
dihjat5.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
10 |
|
dihjat5.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
dihjat3 |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑋 ∨ 𝑃 ) ) = ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) |
12 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
13 |
1 2 7
|
dihcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ ran 𝐼 ) |
14 |
8 9 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ∈ ran 𝐼 ) |
15 |
4 2 5 7 12
|
dihatlat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ) → ( 𝐼 ‘ 𝑃 ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
16 |
8 10 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑃 ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
17 |
2 7 5 6 12 8 14 16
|
dihsmatrn |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ∈ ran 𝐼 ) |
18 |
2 7
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) ) = ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) |
19 |
8 17 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) ) = ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) |
20 |
11 19
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑋 ∨ 𝑃 ) ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) ) ) |
21 |
8
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
22 |
21
|
hllatd |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
23 |
1 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
24 |
10 23
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
25 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ) |
26 |
22 9 24 25
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ) |
27 |
1 2 7
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) ∈ 𝐵 ) |
28 |
8 17 27
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) ∈ 𝐵 ) |
29 |
1 2 7
|
dih11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ∧ ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) ∈ 𝐵 ) → ( ( 𝐼 ‘ ( 𝑋 ∨ 𝑃 ) ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) ) ↔ ( 𝑋 ∨ 𝑃 ) = ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) ) ) |
30 |
8 26 28 29
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( 𝑋 ∨ 𝑃 ) ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) ) ↔ ( 𝑋 ∨ 𝑃 ) = ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) ) ) |
31 |
20 30
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 ∨ 𝑃 ) = ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) ) |