Metamath Proof Explorer


Theorem dihjat5N

Description: Transfer lattice join with atom to subspace sum. (Contributed by NM, 25-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses dihjat5.b 𝐵 = ( Base ‘ 𝐾 )
dihjat5.h 𝐻 = ( LHyp ‘ 𝐾 )
dihjat5.j = ( join ‘ 𝐾 )
dihjat5.a 𝐴 = ( Atoms ‘ 𝐾 )
dihjat5.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihjat5.s = ( LSSum ‘ 𝑈 )
dihjat5.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihjat5.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dihjat5.x ( 𝜑𝑋𝐵 )
dihjat5.p ( 𝜑𝑃𝐴 )
Assertion dihjat5N ( 𝜑 → ( 𝑋 𝑃 ) = ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) ) )

Proof

Step Hyp Ref Expression
1 dihjat5.b 𝐵 = ( Base ‘ 𝐾 )
2 dihjat5.h 𝐻 = ( LHyp ‘ 𝐾 )
3 dihjat5.j = ( join ‘ 𝐾 )
4 dihjat5.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dihjat5.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
6 dihjat5.s = ( LSSum ‘ 𝑈 )
7 dihjat5.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
8 dihjat5.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 dihjat5.x ( 𝜑𝑋𝐵 )
10 dihjat5.p ( 𝜑𝑃𝐴 )
11 1 2 3 4 5 6 7 8 9 10 dihjat3 ( 𝜑 → ( 𝐼 ‘ ( 𝑋 𝑃 ) ) = ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) )
12 eqid ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 )
13 1 2 7 dihcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( 𝐼𝑋 ) ∈ ran 𝐼 )
14 8 9 13 syl2anc ( 𝜑 → ( 𝐼𝑋 ) ∈ ran 𝐼 )
15 4 2 5 7 12 dihatlat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴 ) → ( 𝐼𝑃 ) ∈ ( LSAtoms ‘ 𝑈 ) )
16 8 10 15 syl2anc ( 𝜑 → ( 𝐼𝑃 ) ∈ ( LSAtoms ‘ 𝑈 ) )
17 2 7 5 6 12 8 14 16 dihsmatrn ( 𝜑 → ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) ∈ ran 𝐼 )
18 2 7 dihcnvid2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) ∈ ran 𝐼 ) → ( 𝐼 ‘ ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) ) ) = ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) )
19 8 17 18 syl2anc ( 𝜑 → ( 𝐼 ‘ ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) ) ) = ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) )
20 11 19 eqtr4d ( 𝜑 → ( 𝐼 ‘ ( 𝑋 𝑃 ) ) = ( 𝐼 ‘ ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) ) ) )
21 8 simpld ( 𝜑𝐾 ∈ HL )
22 21 hllatd ( 𝜑𝐾 ∈ Lat )
23 1 4 atbase ( 𝑃𝐴𝑃𝐵 )
24 10 23 syl ( 𝜑𝑃𝐵 )
25 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵 ) → ( 𝑋 𝑃 ) ∈ 𝐵 )
26 22 9 24 25 syl3anc ( 𝜑 → ( 𝑋 𝑃 ) ∈ 𝐵 )
27 1 2 7 dihcnvcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) ) ∈ 𝐵 )
28 8 17 27 syl2anc ( 𝜑 → ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) ) ∈ 𝐵 )
29 1 2 7 dih11 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 𝑃 ) ∈ 𝐵 ∧ ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) ) ∈ 𝐵 ) → ( ( 𝐼 ‘ ( 𝑋 𝑃 ) ) = ( 𝐼 ‘ ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) ) ) ↔ ( 𝑋 𝑃 ) = ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) ) ) )
30 8 26 28 29 syl3anc ( 𝜑 → ( ( 𝐼 ‘ ( 𝑋 𝑃 ) ) = ( 𝐼 ‘ ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) ) ) ↔ ( 𝑋 𝑃 ) = ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) ) ) )
31 20 30 mpbid ( 𝜑 → ( 𝑋 𝑃 ) = ( 𝐼 ‘ ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) ) )