Metamath Proof Explorer


Theorem dihjat5N

Description: Transfer lattice join with atom to subspace sum. (Contributed by NM, 25-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses dihjat5.b B=BaseK
dihjat5.h H=LHypK
dihjat5.j ˙=joinK
dihjat5.a A=AtomsK
dihjat5.u U=DVecHKW
dihjat5.s ˙=LSSumU
dihjat5.i I=DIsoHKW
dihjat5.k φKHLWH
dihjat5.x φXB
dihjat5.p φPA
Assertion dihjat5N φX˙P=I-1IX˙IP

Proof

Step Hyp Ref Expression
1 dihjat5.b B=BaseK
2 dihjat5.h H=LHypK
3 dihjat5.j ˙=joinK
4 dihjat5.a A=AtomsK
5 dihjat5.u U=DVecHKW
6 dihjat5.s ˙=LSSumU
7 dihjat5.i I=DIsoHKW
8 dihjat5.k φKHLWH
9 dihjat5.x φXB
10 dihjat5.p φPA
11 1 2 3 4 5 6 7 8 9 10 dihjat3 φIX˙P=IX˙IP
12 eqid LSAtomsU=LSAtomsU
13 1 2 7 dihcl KHLWHXBIXranI
14 8 9 13 syl2anc φIXranI
15 4 2 5 7 12 dihatlat KHLWHPAIPLSAtomsU
16 8 10 15 syl2anc φIPLSAtomsU
17 2 7 5 6 12 8 14 16 dihsmatrn φIX˙IPranI
18 2 7 dihcnvid2 KHLWHIX˙IPranIII-1IX˙IP=IX˙IP
19 8 17 18 syl2anc φII-1IX˙IP=IX˙IP
20 11 19 eqtr4d φIX˙P=II-1IX˙IP
21 8 simpld φKHL
22 21 hllatd φKLat
23 1 4 atbase PAPB
24 10 23 syl φPB
25 1 3 latjcl KLatXBPBX˙PB
26 22 9 24 25 syl3anc φX˙PB
27 1 2 7 dihcnvcl KHLWHIX˙IPranII-1IX˙IPB
28 8 17 27 syl2anc φI-1IX˙IPB
29 1 2 7 dih11 KHLWHX˙PBI-1IX˙IPBIX˙P=II-1IX˙IPX˙P=I-1IX˙IP
30 8 26 28 29 syl3anc φIX˙P=II-1IX˙IPX˙P=I-1IX˙IP
31 20 30 mpbid φX˙P=I-1IX˙IP