Metamath Proof Explorer


Theorem dvh4dimat

Description: There is an atom that is outside the subspace sum of 3 others. (Contributed by NM, 25-Apr-2015)

Ref Expression
Hypotheses dvh4dimat.h H = LHyp K
dvh4dimat.u U = DVecH K W
dvh4dimat.s ˙ = LSSum U
dvh4dimat.a A = LSAtoms U
dvh4dimat.k φ K HL W H
dvh4dimat.p φ P A
dvh4dimat.q φ Q A
dvh4dimat.r φ R A
Assertion dvh4dimat φ s A ¬ s P ˙ Q ˙ R

Proof

Step Hyp Ref Expression
1 dvh4dimat.h H = LHyp K
2 dvh4dimat.u U = DVecH K W
3 dvh4dimat.s ˙ = LSSum U
4 dvh4dimat.a A = LSAtoms U
5 dvh4dimat.k φ K HL W H
6 dvh4dimat.p φ P A
7 dvh4dimat.q φ Q A
8 dvh4dimat.r φ R A
9 5 simpld φ K HL
10 eqid Atoms K = Atoms K
11 eqid DIsoH K W = DIsoH K W
12 10 1 2 11 4 dihlatat K HL W H P A DIsoH K W -1 P Atoms K
13 5 6 12 syl2anc φ DIsoH K W -1 P Atoms K
14 10 1 2 11 4 dihlatat K HL W H Q A DIsoH K W -1 Q Atoms K
15 5 7 14 syl2anc φ DIsoH K W -1 Q Atoms K
16 10 1 2 11 4 dihlatat K HL W H R A DIsoH K W -1 R Atoms K
17 5 8 16 syl2anc φ DIsoH K W -1 R Atoms K
18 eqid join K = join K
19 eqid K = K
20 18 19 10 3dim3 K HL DIsoH K W -1 P Atoms K DIsoH K W -1 Q Atoms K DIsoH K W -1 R Atoms K r Atoms K ¬ r K DIsoH K W -1 P join K DIsoH K W -1 Q join K DIsoH K W -1 R
21 9 13 15 17 20 syl13anc φ r Atoms K ¬ r K DIsoH K W -1 P join K DIsoH K W -1 Q join K DIsoH K W -1 R
22 5 adantr φ r Atoms K K HL W H
23 1 2 11 4 dih1dimat K HL W H P A P ran DIsoH K W
24 5 6 23 syl2anc φ P ran DIsoH K W
25 1 11 2 3 4 5 24 7 dihsmatrn φ P ˙ Q ran DIsoH K W
26 25 adantr φ r Atoms K P ˙ Q ran DIsoH K W
27 8 adantr φ r Atoms K R A
28 18 1 11 2 3 4 22 26 27 dihjat4 φ r Atoms K P ˙ Q ˙ R = DIsoH K W DIsoH K W -1 P ˙ Q join K DIsoH K W -1 R
29 24 adantr φ r Atoms K P ran DIsoH K W
30 7 adantr φ r Atoms K Q A
31 18 1 11 2 3 4 22 29 30 dihjat6 φ r Atoms K DIsoH K W -1 P ˙ Q = DIsoH K W -1 P join K DIsoH K W -1 Q
32 31 fvoveq1d φ r Atoms K DIsoH K W DIsoH K W -1 P ˙ Q join K DIsoH K W -1 R = DIsoH K W DIsoH K W -1 P join K DIsoH K W -1 Q join K DIsoH K W -1 R
33 28 32 eqtrd φ r Atoms K P ˙ Q ˙ R = DIsoH K W DIsoH K W -1 P join K DIsoH K W -1 Q join K DIsoH K W -1 R
34 33 sseq2d φ r Atoms K DIsoH K W r P ˙ Q ˙ R DIsoH K W r DIsoH K W DIsoH K W -1 P join K DIsoH K W -1 Q join K DIsoH K W -1 R
35 eqid Base K = Base K
36 35 10 atbase r Atoms K r Base K
37 36 adantl φ r Atoms K r Base K
38 9 hllatd φ K Lat
39 35 18 10 hlatjcl K HL DIsoH K W -1 P Atoms K DIsoH K W -1 Q Atoms K DIsoH K W -1 P join K DIsoH K W -1 Q Base K
40 9 13 15 39 syl3anc φ DIsoH K W -1 P join K DIsoH K W -1 Q Base K
41 35 10 atbase DIsoH K W -1 R Atoms K DIsoH K W -1 R Base K
42 17 41 syl φ DIsoH K W -1 R Base K
43 35 18 latjcl K Lat DIsoH K W -1 P join K DIsoH K W -1 Q Base K DIsoH K W -1 R Base K DIsoH K W -1 P join K DIsoH K W -1 Q join K DIsoH K W -1 R Base K
44 38 40 42 43 syl3anc φ DIsoH K W -1 P join K DIsoH K W -1 Q join K DIsoH K W -1 R Base K
45 44 adantr φ r Atoms K DIsoH K W -1 P join K DIsoH K W -1 Q join K DIsoH K W -1 R Base K
46 35 19 1 11 dihord K HL W H r Base K DIsoH K W -1 P join K DIsoH K W -1 Q join K DIsoH K W -1 R Base K DIsoH K W r DIsoH K W DIsoH K W -1 P join K DIsoH K W -1 Q join K DIsoH K W -1 R r K DIsoH K W -1 P join K DIsoH K W -1 Q join K DIsoH K W -1 R
47 22 37 45 46 syl3anc φ r Atoms K DIsoH K W r DIsoH K W DIsoH K W -1 P join K DIsoH K W -1 Q join K DIsoH K W -1 R r K DIsoH K W -1 P join K DIsoH K W -1 Q join K DIsoH K W -1 R
48 34 47 bitr2d φ r Atoms K r K DIsoH K W -1 P join K DIsoH K W -1 Q join K DIsoH K W -1 R DIsoH K W r P ˙ Q ˙ R
49 48 notbid φ r Atoms K ¬ r K DIsoH K W -1 P join K DIsoH K W -1 Q join K DIsoH K W -1 R ¬ DIsoH K W r P ˙ Q ˙ R
50 49 rexbidva φ r Atoms K ¬ r K DIsoH K W -1 P join K DIsoH K W -1 Q join K DIsoH K W -1 R r Atoms K ¬ DIsoH K W r P ˙ Q ˙ R
51 21 50 mpbid φ r Atoms K ¬ DIsoH K W r P ˙ Q ˙ R
52 10 1 2 11 4 dihatlat K HL W H r Atoms K DIsoH K W r A
53 5 52 sylan φ r Atoms K DIsoH K W r A
54 10 1 2 11 4 dihlatat K HL W H s A DIsoH K W -1 s Atoms K
55 5 54 sylan φ s A DIsoH K W -1 s Atoms K
56 5 adantr φ s A K HL W H
57 1 2 11 4 dih1dimat K HL W H s A s ran DIsoH K W
58 5 57 sylan φ s A s ran DIsoH K W
59 1 11 dihcnvid2 K HL W H s ran DIsoH K W DIsoH K W DIsoH K W -1 s = s
60 56 58 59 syl2anc φ s A DIsoH K W DIsoH K W -1 s = s
61 60 eqcomd φ s A s = DIsoH K W DIsoH K W -1 s
62 fveq2 r = DIsoH K W -1 s DIsoH K W r = DIsoH K W DIsoH K W -1 s
63 62 rspceeqv DIsoH K W -1 s Atoms K s = DIsoH K W DIsoH K W -1 s r Atoms K s = DIsoH K W r
64 55 61 63 syl2anc φ s A r Atoms K s = DIsoH K W r
65 sseq1 s = DIsoH K W r s P ˙ Q ˙ R DIsoH K W r P ˙ Q ˙ R
66 65 notbid s = DIsoH K W r ¬ s P ˙ Q ˙ R ¬ DIsoH K W r P ˙ Q ˙ R
67 66 adantl φ s = DIsoH K W r ¬ s P ˙ Q ˙ R ¬ DIsoH K W r P ˙ Q ˙ R
68 53 64 67 rexxfrd φ s A ¬ s P ˙ Q ˙ R r Atoms K ¬ DIsoH K W r P ˙ Q ˙ R
69 51 68 mpbird φ s A ¬ s P ˙ Q ˙ R