| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvh4dimat.h |
|
| 2 |
|
dvh4dimat.u |
|
| 3 |
|
dvh4dimat.s |
|
| 4 |
|
dvh4dimat.a |
|
| 5 |
|
dvh4dimat.k |
|
| 6 |
|
dvh4dimat.p |
|
| 7 |
|
dvh4dimat.q |
|
| 8 |
|
dvh4dimat.r |
|
| 9 |
5
|
simpld |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
10 1 2 11 4
|
dihlatat |
|
| 13 |
5 6 12
|
syl2anc |
|
| 14 |
10 1 2 11 4
|
dihlatat |
|
| 15 |
5 7 14
|
syl2anc |
|
| 16 |
10 1 2 11 4
|
dihlatat |
|
| 17 |
5 8 16
|
syl2anc |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
18 19 10
|
3dim3 |
|
| 21 |
9 13 15 17 20
|
syl13anc |
|
| 22 |
5
|
adantr |
|
| 23 |
1 2 11 4
|
dih1dimat |
|
| 24 |
5 6 23
|
syl2anc |
|
| 25 |
1 11 2 3 4 5 24 7
|
dihsmatrn |
|
| 26 |
25
|
adantr |
|
| 27 |
8
|
adantr |
|
| 28 |
18 1 11 2 3 4 22 26 27
|
dihjat4 |
|
| 29 |
24
|
adantr |
|
| 30 |
7
|
adantr |
|
| 31 |
18 1 11 2 3 4 22 29 30
|
dihjat6 |
|
| 32 |
31
|
fvoveq1d |
|
| 33 |
28 32
|
eqtrd |
|
| 34 |
33
|
sseq2d |
|
| 35 |
|
eqid |
|
| 36 |
35 10
|
atbase |
|
| 37 |
36
|
adantl |
|
| 38 |
9
|
hllatd |
|
| 39 |
35 18 10
|
hlatjcl |
|
| 40 |
9 13 15 39
|
syl3anc |
|
| 41 |
35 10
|
atbase |
|
| 42 |
17 41
|
syl |
|
| 43 |
35 18
|
latjcl |
|
| 44 |
38 40 42 43
|
syl3anc |
|
| 45 |
44
|
adantr |
|
| 46 |
35 19 1 11
|
dihord |
|
| 47 |
22 37 45 46
|
syl3anc |
|
| 48 |
34 47
|
bitr2d |
|
| 49 |
48
|
notbid |
|
| 50 |
49
|
rexbidva |
|
| 51 |
21 50
|
mpbid |
|
| 52 |
10 1 2 11 4
|
dihatlat |
|
| 53 |
5 52
|
sylan |
|
| 54 |
10 1 2 11 4
|
dihlatat |
|
| 55 |
5 54
|
sylan |
|
| 56 |
5
|
adantr |
|
| 57 |
1 2 11 4
|
dih1dimat |
|
| 58 |
5 57
|
sylan |
|
| 59 |
1 11
|
dihcnvid2 |
|
| 60 |
56 58 59
|
syl2anc |
|
| 61 |
60
|
eqcomd |
|
| 62 |
|
fveq2 |
|
| 63 |
62
|
rspceeqv |
|
| 64 |
55 61 63
|
syl2anc |
|
| 65 |
|
sseq1 |
|
| 66 |
65
|
notbid |
|
| 67 |
66
|
adantl |
|
| 68 |
53 64 67
|
rexxfrd |
|
| 69 |
51 68
|
mpbird |
|