| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvh4dimat.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dvh4dimat.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
dvh4dimat.s |
|- .(+) = ( LSSum ` U ) |
| 4 |
|
dvh4dimat.a |
|- A = ( LSAtoms ` U ) |
| 5 |
|
dvh4dimat.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 6 |
|
dvh4dimat.p |
|- ( ph -> P e. A ) |
| 7 |
|
dvh4dimat.q |
|- ( ph -> Q e. A ) |
| 8 |
|
dvh4dimat.r |
|- ( ph -> R e. A ) |
| 9 |
5
|
simpld |
|- ( ph -> K e. HL ) |
| 10 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
| 11 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
| 12 |
10 1 2 11 4
|
dihlatat |
|- ( ( ( K e. HL /\ W e. H ) /\ P e. A ) -> ( `' ( ( DIsoH ` K ) ` W ) ` P ) e. ( Atoms ` K ) ) |
| 13 |
5 6 12
|
syl2anc |
|- ( ph -> ( `' ( ( DIsoH ` K ) ` W ) ` P ) e. ( Atoms ` K ) ) |
| 14 |
10 1 2 11 4
|
dihlatat |
|- ( ( ( K e. HL /\ W e. H ) /\ Q e. A ) -> ( `' ( ( DIsoH ` K ) ` W ) ` Q ) e. ( Atoms ` K ) ) |
| 15 |
5 7 14
|
syl2anc |
|- ( ph -> ( `' ( ( DIsoH ` K ) ` W ) ` Q ) e. ( Atoms ` K ) ) |
| 16 |
10 1 2 11 4
|
dihlatat |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A ) -> ( `' ( ( DIsoH ` K ) ` W ) ` R ) e. ( Atoms ` K ) ) |
| 17 |
5 8 16
|
syl2anc |
|- ( ph -> ( `' ( ( DIsoH ` K ) ` W ) ` R ) e. ( Atoms ` K ) ) |
| 18 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 19 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 20 |
18 19 10
|
3dim3 |
|- ( ( K e. HL /\ ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) e. ( Atoms ` K ) /\ ( `' ( ( DIsoH ` K ) ` W ) ` Q ) e. ( Atoms ` K ) /\ ( `' ( ( DIsoH ` K ) ` W ) ` R ) e. ( Atoms ` K ) ) ) -> E. r e. ( Atoms ` K ) -. r ( le ` K ) ( ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` Q ) ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` R ) ) ) |
| 21 |
9 13 15 17 20
|
syl13anc |
|- ( ph -> E. r e. ( Atoms ` K ) -. r ( le ` K ) ( ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` Q ) ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` R ) ) ) |
| 22 |
5
|
adantr |
|- ( ( ph /\ r e. ( Atoms ` K ) ) -> ( K e. HL /\ W e. H ) ) |
| 23 |
1 2 11 4
|
dih1dimat |
|- ( ( ( K e. HL /\ W e. H ) /\ P e. A ) -> P e. ran ( ( DIsoH ` K ) ` W ) ) |
| 24 |
5 6 23
|
syl2anc |
|- ( ph -> P e. ran ( ( DIsoH ` K ) ` W ) ) |
| 25 |
1 11 2 3 4 5 24 7
|
dihsmatrn |
|- ( ph -> ( P .(+) Q ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ r e. ( Atoms ` K ) ) -> ( P .(+) Q ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 27 |
8
|
adantr |
|- ( ( ph /\ r e. ( Atoms ` K ) ) -> R e. A ) |
| 28 |
18 1 11 2 3 4 22 26 27
|
dihjat4 |
|- ( ( ph /\ r e. ( Atoms ` K ) ) -> ( ( P .(+) Q ) .(+) R ) = ( ( ( DIsoH ` K ) ` W ) ` ( ( `' ( ( DIsoH ` K ) ` W ) ` ( P .(+) Q ) ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` R ) ) ) ) |
| 29 |
24
|
adantr |
|- ( ( ph /\ r e. ( Atoms ` K ) ) -> P e. ran ( ( DIsoH ` K ) ` W ) ) |
| 30 |
7
|
adantr |
|- ( ( ph /\ r e. ( Atoms ` K ) ) -> Q e. A ) |
| 31 |
18 1 11 2 3 4 22 29 30
|
dihjat6 |
|- ( ( ph /\ r e. ( Atoms ` K ) ) -> ( `' ( ( DIsoH ` K ) ` W ) ` ( P .(+) Q ) ) = ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` Q ) ) ) |
| 32 |
31
|
fvoveq1d |
|- ( ( ph /\ r e. ( Atoms ` K ) ) -> ( ( ( DIsoH ` K ) ` W ) ` ( ( `' ( ( DIsoH ` K ) ` W ) ` ( P .(+) Q ) ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` R ) ) ) = ( ( ( DIsoH ` K ) ` W ) ` ( ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` Q ) ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` R ) ) ) ) |
| 33 |
28 32
|
eqtrd |
|- ( ( ph /\ r e. ( Atoms ` K ) ) -> ( ( P .(+) Q ) .(+) R ) = ( ( ( DIsoH ` K ) ` W ) ` ( ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` Q ) ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` R ) ) ) ) |
| 34 |
33
|
sseq2d |
|- ( ( ph /\ r e. ( Atoms ` K ) ) -> ( ( ( ( DIsoH ` K ) ` W ) ` r ) C_ ( ( P .(+) Q ) .(+) R ) <-> ( ( ( DIsoH ` K ) ` W ) ` r ) C_ ( ( ( DIsoH ` K ) ` W ) ` ( ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` Q ) ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` R ) ) ) ) ) |
| 35 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 36 |
35 10
|
atbase |
|- ( r e. ( Atoms ` K ) -> r e. ( Base ` K ) ) |
| 37 |
36
|
adantl |
|- ( ( ph /\ r e. ( Atoms ` K ) ) -> r e. ( Base ` K ) ) |
| 38 |
9
|
hllatd |
|- ( ph -> K e. Lat ) |
| 39 |
35 18 10
|
hlatjcl |
|- ( ( K e. HL /\ ( `' ( ( DIsoH ` K ) ` W ) ` P ) e. ( Atoms ` K ) /\ ( `' ( ( DIsoH ` K ) ` W ) ` Q ) e. ( Atoms ` K ) ) -> ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` Q ) ) e. ( Base ` K ) ) |
| 40 |
9 13 15 39
|
syl3anc |
|- ( ph -> ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` Q ) ) e. ( Base ` K ) ) |
| 41 |
35 10
|
atbase |
|- ( ( `' ( ( DIsoH ` K ) ` W ) ` R ) e. ( Atoms ` K ) -> ( `' ( ( DIsoH ` K ) ` W ) ` R ) e. ( Base ` K ) ) |
| 42 |
17 41
|
syl |
|- ( ph -> ( `' ( ( DIsoH ` K ) ` W ) ` R ) e. ( Base ` K ) ) |
| 43 |
35 18
|
latjcl |
|- ( ( K e. Lat /\ ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` Q ) ) e. ( Base ` K ) /\ ( `' ( ( DIsoH ` K ) ` W ) ` R ) e. ( Base ` K ) ) -> ( ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` Q ) ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` R ) ) e. ( Base ` K ) ) |
| 44 |
38 40 42 43
|
syl3anc |
|- ( ph -> ( ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` Q ) ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` R ) ) e. ( Base ` K ) ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ r e. ( Atoms ` K ) ) -> ( ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` Q ) ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` R ) ) e. ( Base ` K ) ) |
| 46 |
35 19 1 11
|
dihord |
|- ( ( ( K e. HL /\ W e. H ) /\ r e. ( Base ` K ) /\ ( ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` Q ) ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` R ) ) e. ( Base ` K ) ) -> ( ( ( ( DIsoH ` K ) ` W ) ` r ) C_ ( ( ( DIsoH ` K ) ` W ) ` ( ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` Q ) ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` R ) ) ) <-> r ( le ` K ) ( ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` Q ) ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` R ) ) ) ) |
| 47 |
22 37 45 46
|
syl3anc |
|- ( ( ph /\ r e. ( Atoms ` K ) ) -> ( ( ( ( DIsoH ` K ) ` W ) ` r ) C_ ( ( ( DIsoH ` K ) ` W ) ` ( ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` Q ) ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` R ) ) ) <-> r ( le ` K ) ( ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` Q ) ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` R ) ) ) ) |
| 48 |
34 47
|
bitr2d |
|- ( ( ph /\ r e. ( Atoms ` K ) ) -> ( r ( le ` K ) ( ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` Q ) ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` R ) ) <-> ( ( ( DIsoH ` K ) ` W ) ` r ) C_ ( ( P .(+) Q ) .(+) R ) ) ) |
| 49 |
48
|
notbid |
|- ( ( ph /\ r e. ( Atoms ` K ) ) -> ( -. r ( le ` K ) ( ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` Q ) ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` R ) ) <-> -. ( ( ( DIsoH ` K ) ` W ) ` r ) C_ ( ( P .(+) Q ) .(+) R ) ) ) |
| 50 |
49
|
rexbidva |
|- ( ph -> ( E. r e. ( Atoms ` K ) -. r ( le ` K ) ( ( ( `' ( ( DIsoH ` K ) ` W ) ` P ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` Q ) ) ( join ` K ) ( `' ( ( DIsoH ` K ) ` W ) ` R ) ) <-> E. r e. ( Atoms ` K ) -. ( ( ( DIsoH ` K ) ` W ) ` r ) C_ ( ( P .(+) Q ) .(+) R ) ) ) |
| 51 |
21 50
|
mpbid |
|- ( ph -> E. r e. ( Atoms ` K ) -. ( ( ( DIsoH ` K ) ` W ) ` r ) C_ ( ( P .(+) Q ) .(+) R ) ) |
| 52 |
10 1 2 11 4
|
dihatlat |
|- ( ( ( K e. HL /\ W e. H ) /\ r e. ( Atoms ` K ) ) -> ( ( ( DIsoH ` K ) ` W ) ` r ) e. A ) |
| 53 |
5 52
|
sylan |
|- ( ( ph /\ r e. ( Atoms ` K ) ) -> ( ( ( DIsoH ` K ) ` W ) ` r ) e. A ) |
| 54 |
10 1 2 11 4
|
dihlatat |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. A ) -> ( `' ( ( DIsoH ` K ) ` W ) ` s ) e. ( Atoms ` K ) ) |
| 55 |
5 54
|
sylan |
|- ( ( ph /\ s e. A ) -> ( `' ( ( DIsoH ` K ) ` W ) ` s ) e. ( Atoms ` K ) ) |
| 56 |
5
|
adantr |
|- ( ( ph /\ s e. A ) -> ( K e. HL /\ W e. H ) ) |
| 57 |
1 2 11 4
|
dih1dimat |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. A ) -> s e. ran ( ( DIsoH ` K ) ` W ) ) |
| 58 |
5 57
|
sylan |
|- ( ( ph /\ s e. A ) -> s e. ran ( ( DIsoH ` K ) ` W ) ) |
| 59 |
1 11
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ( ( DIsoH ` K ) ` W ) ` ( `' ( ( DIsoH ` K ) ` W ) ` s ) ) = s ) |
| 60 |
56 58 59
|
syl2anc |
|- ( ( ph /\ s e. A ) -> ( ( ( DIsoH ` K ) ` W ) ` ( `' ( ( DIsoH ` K ) ` W ) ` s ) ) = s ) |
| 61 |
60
|
eqcomd |
|- ( ( ph /\ s e. A ) -> s = ( ( ( DIsoH ` K ) ` W ) ` ( `' ( ( DIsoH ` K ) ` W ) ` s ) ) ) |
| 62 |
|
fveq2 |
|- ( r = ( `' ( ( DIsoH ` K ) ` W ) ` s ) -> ( ( ( DIsoH ` K ) ` W ) ` r ) = ( ( ( DIsoH ` K ) ` W ) ` ( `' ( ( DIsoH ` K ) ` W ) ` s ) ) ) |
| 63 |
62
|
rspceeqv |
|- ( ( ( `' ( ( DIsoH ` K ) ` W ) ` s ) e. ( Atoms ` K ) /\ s = ( ( ( DIsoH ` K ) ` W ) ` ( `' ( ( DIsoH ` K ) ` W ) ` s ) ) ) -> E. r e. ( Atoms ` K ) s = ( ( ( DIsoH ` K ) ` W ) ` r ) ) |
| 64 |
55 61 63
|
syl2anc |
|- ( ( ph /\ s e. A ) -> E. r e. ( Atoms ` K ) s = ( ( ( DIsoH ` K ) ` W ) ` r ) ) |
| 65 |
|
sseq1 |
|- ( s = ( ( ( DIsoH ` K ) ` W ) ` r ) -> ( s C_ ( ( P .(+) Q ) .(+) R ) <-> ( ( ( DIsoH ` K ) ` W ) ` r ) C_ ( ( P .(+) Q ) .(+) R ) ) ) |
| 66 |
65
|
notbid |
|- ( s = ( ( ( DIsoH ` K ) ` W ) ` r ) -> ( -. s C_ ( ( P .(+) Q ) .(+) R ) <-> -. ( ( ( DIsoH ` K ) ` W ) ` r ) C_ ( ( P .(+) Q ) .(+) R ) ) ) |
| 67 |
66
|
adantl |
|- ( ( ph /\ s = ( ( ( DIsoH ` K ) ` W ) ` r ) ) -> ( -. s C_ ( ( P .(+) Q ) .(+) R ) <-> -. ( ( ( DIsoH ` K ) ` W ) ` r ) C_ ( ( P .(+) Q ) .(+) R ) ) ) |
| 68 |
53 64 67
|
rexxfrd |
|- ( ph -> ( E. s e. A -. s C_ ( ( P .(+) Q ) .(+) R ) <-> E. r e. ( Atoms ` K ) -. ( ( ( DIsoH ` K ) ` W ) ` r ) C_ ( ( P .(+) Q ) .(+) R ) ) ) |
| 69 |
51 68
|
mpbird |
|- ( ph -> E. s e. A -. s C_ ( ( P .(+) Q ) .(+) R ) ) |