Metamath Proof Explorer


Theorem dvh3dimatN

Description: There is an atom that is outside the subspace sum of 2 others. (Contributed by NM, 25-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses dvh4dimat.h
|- H = ( LHyp ` K )
dvh4dimat.u
|- U = ( ( DVecH ` K ) ` W )
dvh3dimat.s
|- .(+) = ( LSSum ` U )
dvh3dimat.a
|- A = ( LSAtoms ` U )
dvh3dimat.k
|- ( ph -> ( K e. HL /\ W e. H ) )
dvh3dimat.p
|- ( ph -> P e. A )
dvh3dimat.q
|- ( ph -> Q e. A )
Assertion dvh3dimatN
|- ( ph -> E. s e. A -. s C_ ( P .(+) Q ) )

Proof

Step Hyp Ref Expression
1 dvh4dimat.h
 |-  H = ( LHyp ` K )
2 dvh4dimat.u
 |-  U = ( ( DVecH ` K ) ` W )
3 dvh3dimat.s
 |-  .(+) = ( LSSum ` U )
4 dvh3dimat.a
 |-  A = ( LSAtoms ` U )
5 dvh3dimat.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
6 dvh3dimat.p
 |-  ( ph -> P e. A )
7 dvh3dimat.q
 |-  ( ph -> Q e. A )
8 1 2 3 4 5 6 6 7 dvh4dimat
 |-  ( ph -> E. s e. A -. s C_ ( ( P .(+) P ) .(+) Q ) )
9 1 2 5 dvhlmod
 |-  ( ph -> U e. LMod )
10 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
11 10 4 9 6 lsatlssel
 |-  ( ph -> P e. ( LSubSp ` U ) )
12 10 lsssubg
 |-  ( ( U e. LMod /\ P e. ( LSubSp ` U ) ) -> P e. ( SubGrp ` U ) )
13 9 11 12 syl2anc
 |-  ( ph -> P e. ( SubGrp ` U ) )
14 3 lsmidm
 |-  ( P e. ( SubGrp ` U ) -> ( P .(+) P ) = P )
15 13 14 syl
 |-  ( ph -> ( P .(+) P ) = P )
16 15 oveq1d
 |-  ( ph -> ( ( P .(+) P ) .(+) Q ) = ( P .(+) Q ) )
17 16 sseq2d
 |-  ( ph -> ( s C_ ( ( P .(+) P ) .(+) Q ) <-> s C_ ( P .(+) Q ) ) )
18 17 notbid
 |-  ( ph -> ( -. s C_ ( ( P .(+) P ) .(+) Q ) <-> -. s C_ ( P .(+) Q ) ) )
19 18 rexbidv
 |-  ( ph -> ( E. s e. A -. s C_ ( ( P .(+) P ) .(+) Q ) <-> E. s e. A -. s C_ ( P .(+) Q ) ) )
20 8 19 mpbid
 |-  ( ph -> E. s e. A -. s C_ ( P .(+) Q ) )