Step |
Hyp |
Ref |
Expression |
1 |
|
dvh4dimat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvh4dimat.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvh3dimat.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
4 |
|
dvh3dimat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
5 |
|
dvh3dimat.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
dvh3dimat.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
7 |
|
dvh3dimat.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
8 |
1 2 3 4 5 6 6 7
|
dvh4dimat |
⊢ ( 𝜑 → ∃ 𝑠 ∈ 𝐴 ¬ 𝑠 ⊆ ( ( 𝑃 ⊕ 𝑃 ) ⊕ 𝑄 ) ) |
9 |
1 2 5
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
10 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
11 |
10 4 9 6
|
lsatlssel |
⊢ ( 𝜑 → 𝑃 ∈ ( LSubSp ‘ 𝑈 ) ) |
12 |
10
|
lsssubg |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑃 ∈ ( LSubSp ‘ 𝑈 ) ) → 𝑃 ∈ ( SubGrp ‘ 𝑈 ) ) |
13 |
9 11 12
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ ( SubGrp ‘ 𝑈 ) ) |
14 |
3
|
lsmidm |
⊢ ( 𝑃 ∈ ( SubGrp ‘ 𝑈 ) → ( 𝑃 ⊕ 𝑃 ) = 𝑃 ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → ( 𝑃 ⊕ 𝑃 ) = 𝑃 ) |
16 |
15
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑃 ⊕ 𝑃 ) ⊕ 𝑄 ) = ( 𝑃 ⊕ 𝑄 ) ) |
17 |
16
|
sseq2d |
⊢ ( 𝜑 → ( 𝑠 ⊆ ( ( 𝑃 ⊕ 𝑃 ) ⊕ 𝑄 ) ↔ 𝑠 ⊆ ( 𝑃 ⊕ 𝑄 ) ) ) |
18 |
17
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝑠 ⊆ ( ( 𝑃 ⊕ 𝑃 ) ⊕ 𝑄 ) ↔ ¬ 𝑠 ⊆ ( 𝑃 ⊕ 𝑄 ) ) ) |
19 |
18
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝐴 ¬ 𝑠 ⊆ ( ( 𝑃 ⊕ 𝑃 ) ⊕ 𝑄 ) ↔ ∃ 𝑠 ∈ 𝐴 ¬ 𝑠 ⊆ ( 𝑃 ⊕ 𝑄 ) ) ) |
20 |
8 19
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑠 ∈ 𝐴 ¬ 𝑠 ⊆ ( 𝑃 ⊕ 𝑄 ) ) |