Step |
Hyp |
Ref |
Expression |
1 |
|
dvh4dimat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvh4dimat.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvh2dimat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
4 |
|
dvh2dimat.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
5 |
|
dvh2dimat.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
6 |
|
eqid |
⊢ ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 ) |
7 |
1 2 6 3 4 5 5
|
dvh3dimatN |
⊢ ( 𝜑 → ∃ 𝑠 ∈ 𝐴 ¬ 𝑠 ⊆ ( 𝑃 ( LSSum ‘ 𝑈 ) 𝑃 ) ) |
8 |
1 2 4
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
10 |
9 3 8 5
|
lsatlssel |
⊢ ( 𝜑 → 𝑃 ∈ ( LSubSp ‘ 𝑈 ) ) |
11 |
9
|
lsssubg |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑃 ∈ ( LSubSp ‘ 𝑈 ) ) → 𝑃 ∈ ( SubGrp ‘ 𝑈 ) ) |
12 |
8 10 11
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ ( SubGrp ‘ 𝑈 ) ) |
13 |
6
|
lsmidm |
⊢ ( 𝑃 ∈ ( SubGrp ‘ 𝑈 ) → ( 𝑃 ( LSSum ‘ 𝑈 ) 𝑃 ) = 𝑃 ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → ( 𝑃 ( LSSum ‘ 𝑈 ) 𝑃 ) = 𝑃 ) |
15 |
14
|
sseq2d |
⊢ ( 𝜑 → ( 𝑠 ⊆ ( 𝑃 ( LSSum ‘ 𝑈 ) 𝑃 ) ↔ 𝑠 ⊆ 𝑃 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝑠 ⊆ ( 𝑃 ( LSSum ‘ 𝑈 ) 𝑃 ) ↔ 𝑠 ⊆ 𝑃 ) ) |
17 |
1 2 4
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑈 ∈ LVec ) |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ 𝐴 ) |
20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑃 ∈ 𝐴 ) |
21 |
3 18 19 20
|
lsatcmp |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝑠 ⊆ 𝑃 ↔ 𝑠 = 𝑃 ) ) |
22 |
16 21
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝑠 ⊆ ( 𝑃 ( LSSum ‘ 𝑈 ) 𝑃 ) ↔ 𝑠 = 𝑃 ) ) |
23 |
22
|
necon3bbid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( ¬ 𝑠 ⊆ ( 𝑃 ( LSSum ‘ 𝑈 ) 𝑃 ) ↔ 𝑠 ≠ 𝑃 ) ) |
24 |
23
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝐴 ¬ 𝑠 ⊆ ( 𝑃 ( LSSum ‘ 𝑈 ) 𝑃 ) ↔ ∃ 𝑠 ∈ 𝐴 𝑠 ≠ 𝑃 ) ) |
25 |
7 24
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑠 ∈ 𝐴 𝑠 ≠ 𝑃 ) |