Metamath Proof Explorer


Theorem dvh2dimatN

Description: Given an atom, there exists another. (Contributed by NM, 25-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses dvh4dimat.h 𝐻 = ( LHyp ‘ 𝐾 )
dvh4dimat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dvh2dimat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
dvh2dimat.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dvh2dimat.p ( 𝜑𝑃𝐴 )
Assertion dvh2dimatN ( 𝜑 → ∃ 𝑠𝐴 𝑠𝑃 )

Proof

Step Hyp Ref Expression
1 dvh4dimat.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvh4dimat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 dvh2dimat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
4 dvh2dimat.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
5 dvh2dimat.p ( 𝜑𝑃𝐴 )
6 eqid ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 )
7 1 2 6 3 4 5 5 dvh3dimatN ( 𝜑 → ∃ 𝑠𝐴 ¬ 𝑠 ⊆ ( 𝑃 ( LSSum ‘ 𝑈 ) 𝑃 ) )
8 1 2 4 dvhlmod ( 𝜑𝑈 ∈ LMod )
9 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
10 9 3 8 5 lsatlssel ( 𝜑𝑃 ∈ ( LSubSp ‘ 𝑈 ) )
11 9 lsssubg ( ( 𝑈 ∈ LMod ∧ 𝑃 ∈ ( LSubSp ‘ 𝑈 ) ) → 𝑃 ∈ ( SubGrp ‘ 𝑈 ) )
12 8 10 11 syl2anc ( 𝜑𝑃 ∈ ( SubGrp ‘ 𝑈 ) )
13 6 lsmidm ( 𝑃 ∈ ( SubGrp ‘ 𝑈 ) → ( 𝑃 ( LSSum ‘ 𝑈 ) 𝑃 ) = 𝑃 )
14 12 13 syl ( 𝜑 → ( 𝑃 ( LSSum ‘ 𝑈 ) 𝑃 ) = 𝑃 )
15 14 sseq2d ( 𝜑 → ( 𝑠 ⊆ ( 𝑃 ( LSSum ‘ 𝑈 ) 𝑃 ) ↔ 𝑠𝑃 ) )
16 15 adantr ( ( 𝜑𝑠𝐴 ) → ( 𝑠 ⊆ ( 𝑃 ( LSSum ‘ 𝑈 ) 𝑃 ) ↔ 𝑠𝑃 ) )
17 1 2 4 dvhlvec ( 𝜑𝑈 ∈ LVec )
18 17 adantr ( ( 𝜑𝑠𝐴 ) → 𝑈 ∈ LVec )
19 simpr ( ( 𝜑𝑠𝐴 ) → 𝑠𝐴 )
20 5 adantr ( ( 𝜑𝑠𝐴 ) → 𝑃𝐴 )
21 3 18 19 20 lsatcmp ( ( 𝜑𝑠𝐴 ) → ( 𝑠𝑃𝑠 = 𝑃 ) )
22 16 21 bitrd ( ( 𝜑𝑠𝐴 ) → ( 𝑠 ⊆ ( 𝑃 ( LSSum ‘ 𝑈 ) 𝑃 ) ↔ 𝑠 = 𝑃 ) )
23 22 necon3bbid ( ( 𝜑𝑠𝐴 ) → ( ¬ 𝑠 ⊆ ( 𝑃 ( LSSum ‘ 𝑈 ) 𝑃 ) ↔ 𝑠𝑃 ) )
24 23 rexbidva ( 𝜑 → ( ∃ 𝑠𝐴 ¬ 𝑠 ⊆ ( 𝑃 ( LSSum ‘ 𝑈 ) 𝑃 ) ↔ ∃ 𝑠𝐴 𝑠𝑃 ) )
25 7 24 mpbid ( 𝜑 → ∃ 𝑠𝐴 𝑠𝑃 )