Metamath Proof Explorer


Theorem dvh1dimat

Description: There exists an atom. (Contributed by NM, 25-Apr-2015)

Ref Expression
Hypotheses dvh4dimat.h 𝐻 = ( LHyp ‘ 𝐾 )
dvh4dimat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dvh1dimat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
dvh1dimat.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion dvh1dimat ( 𝜑 → ∃ 𝑠 𝑠𝐴 )

Proof

Step Hyp Ref Expression
1 dvh4dimat.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvh4dimat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 dvh1dimat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
4 dvh1dimat.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
5 eqid ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
6 eqid ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
7 1 5 6 2 3 4 dihat ( 𝜑 → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ 𝐴 )
8 elex2 ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ 𝐴 → ∃ 𝑠 𝑠𝐴 )
9 7 8 syl ( 𝜑 → ∃ 𝑠 𝑠𝐴 )