Description: There exists an atom. (Contributed by NM, 25-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvh4dimat.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
dvh4dimat.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | ||
dvh1dimat.a | ⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) | ||
dvh1dimat.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | ||
Assertion | dvh1dimat | ⊢ ( 𝜑 → ∃ 𝑠 𝑠 ∈ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvh4dimat.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
2 | dvh4dimat.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | |
3 | dvh1dimat.a | ⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) | |
4 | dvh1dimat.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | |
5 | eqid | ⊢ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) | |
6 | eqid | ⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | |
7 | 1 5 6 2 3 4 | dihat | ⊢ ( 𝜑 → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ 𝐴 ) |
8 | elex2 | ⊢ ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ 𝐴 → ∃ 𝑠 𝑠 ∈ 𝐴 ) | |
9 | 7 8 | syl | ⊢ ( 𝜑 → ∃ 𝑠 𝑠 ∈ 𝐴 ) |