Metamath Proof Explorer


Theorem dvh1dimat

Description: There exists an atom. (Contributed by NM, 25-Apr-2015)

Ref Expression
Hypotheses dvh4dimat.h
|- H = ( LHyp ` K )
dvh4dimat.u
|- U = ( ( DVecH ` K ) ` W )
dvh1dimat.a
|- A = ( LSAtoms ` U )
dvh1dimat.k
|- ( ph -> ( K e. HL /\ W e. H ) )
Assertion dvh1dimat
|- ( ph -> E. s s e. A )

Proof

Step Hyp Ref Expression
1 dvh4dimat.h
 |-  H = ( LHyp ` K )
2 dvh4dimat.u
 |-  U = ( ( DVecH ` K ) ` W )
3 dvh1dimat.a
 |-  A = ( LSAtoms ` U )
4 dvh1dimat.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
5 eqid
 |-  ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W )
6 eqid
 |-  ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W )
7 1 5 6 2 3 4 dihat
 |-  ( ph -> ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` W ) ) e. A )
8 elex2
 |-  ( ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` W ) ) e. A -> E. s s e. A )
9 7 8 syl
 |-  ( ph -> E. s s e. A )