Description: There exists an atom. (Contributed by NM, 25-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvh4dimat.h | |- H = ( LHyp ` K ) |
|
| dvh4dimat.u | |- U = ( ( DVecH ` K ) ` W ) |
||
| dvh1dimat.a | |- A = ( LSAtoms ` U ) |
||
| dvh1dimat.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
| Assertion | dvh1dimat | |- ( ph -> E. s s e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvh4dimat.h | |- H = ( LHyp ` K ) |
|
| 2 | dvh4dimat.u | |- U = ( ( DVecH ` K ) ` W ) |
|
| 3 | dvh1dimat.a | |- A = ( LSAtoms ` U ) |
|
| 4 | dvh1dimat.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
| 5 | eqid | |- ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W ) |
|
| 6 | eqid | |- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
|
| 7 | 1 5 6 2 3 4 | dihat | |- ( ph -> ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` W ) ) e. A ) |
| 8 | elex2 | |- ( ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` W ) ) e. A -> E. s s e. A ) |
|
| 9 | 7 8 | syl | |- ( ph -> E. s s e. A ) |